

Zur Absoluten Kalibrierung von Referenzstationen:

Grundlagen, Anwendungen und das Hannoversche Verfahren

Gerhard Wübbena, Martin Schmitz, Mark Bachmann

Geo++

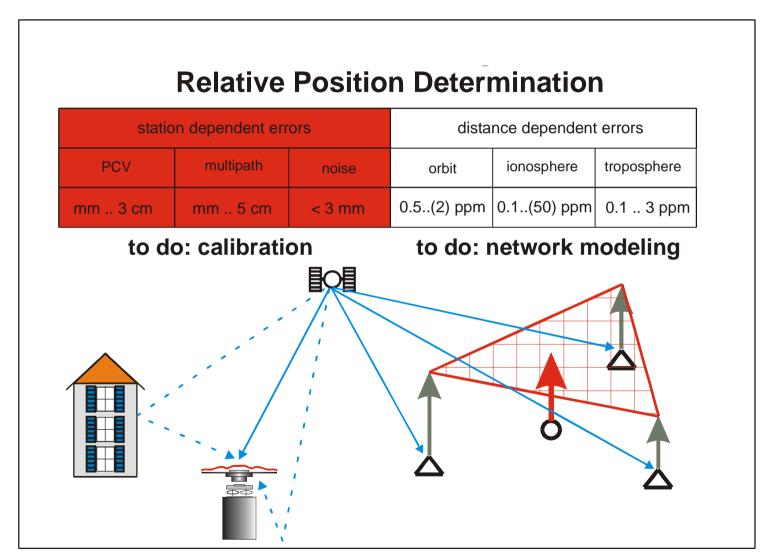
Gesellschaft für satellitengestützte geodätische und navigatorische Technologien mbH
D–30827 Garbsen, Germany

Günter Seeber, Volker Böder, Falko Menge

Institut für Erdmessung (IfE), Universität Hannover D–30167 Hannover, Germany

Gliederung

- Einführung
- Das Multipath Problem
- Absolute PCV Kalibrierung
- Multipath Dekorrelation
- Absolute Multipath Kalibrierung
- Absolute Multipath Korrekturen
- Tschebychev Polynome
- Weitere Entwicklungen
- Zusammenfassung

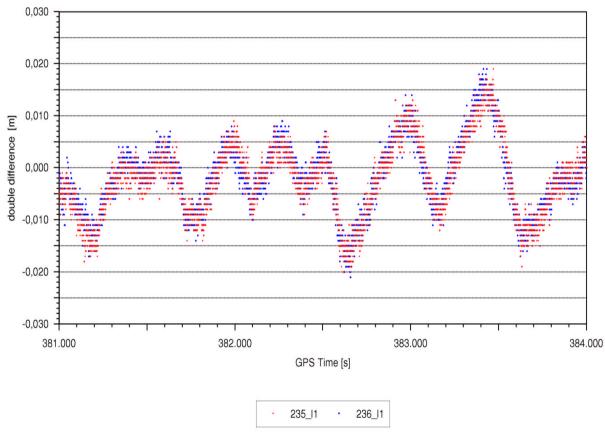

Motivation und Ziele

- Fortschritte in präziser GPS Positionsbestimmung:
 - Hard- und Software
 - Algorithmen und Methoden
- Notwendigkeit Fehlererfassung auf 1 mm Niveau
 - Vernetzung von Referenzstationen, große Netze
 - kurze Beobachtungszeiten (z.B. RTK)
- z.Z. stationsabhängiger Multipath größter Fehleranteil
- genaue, zuverlässige, schnelle Mehrdeutigkeit– und Positionslösung
- => Multipath (MP) Kalibrierung der L1 und L2 Trägerphase

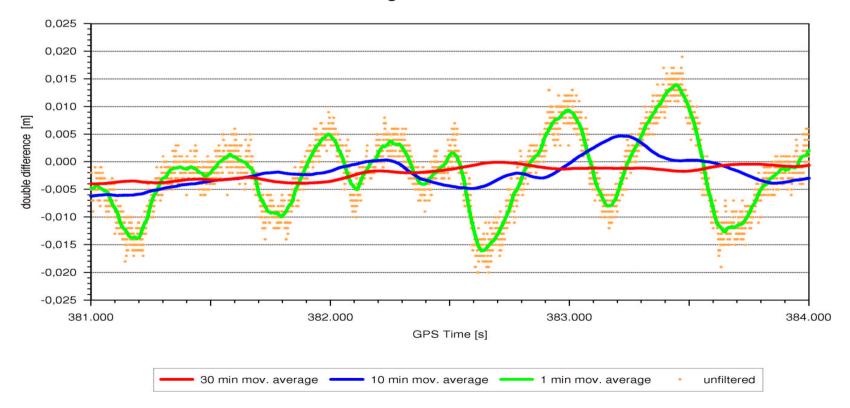
GPS Fehlerhaushalt

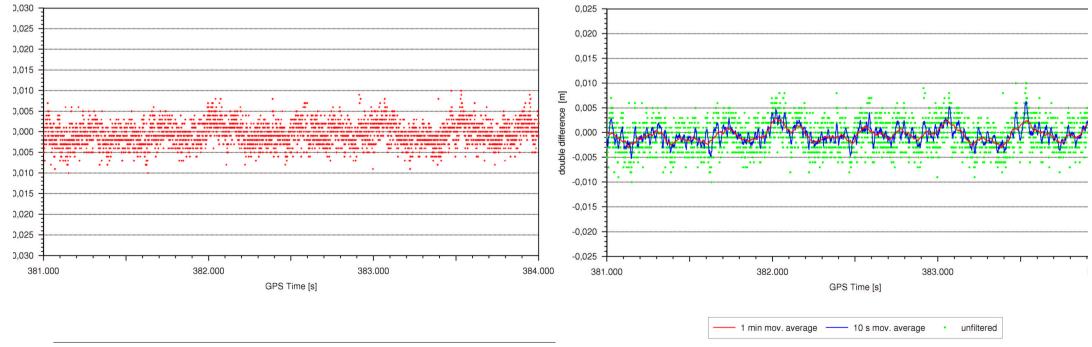
- zwei dominierende stationsabhängige Fehler: PCV + MP
- Größenordnung der Fehler auf L1–, L2– Beobachtungsgrößen
 - PCV 1 mm ... 3 cm
 - MP 1 mm ... 5 cm
- Trennung von MP und PCV
 - Vorrausetzung f
 ür absolute PCV Kalibrierung
 - Vorrausetzung f
 ür absolute MP Kalibrierung
 - Summe PCV und MP ergibt vollständigen stationsabhängigen Fehler
- Zielsetzung MP Kalibrierung
 - 1 mm Korrekturen (L1, L2 Signal)
 - absolute Korrekturen
 - keine Annahmen (Gain, PCV, MP, ...)

Multipath

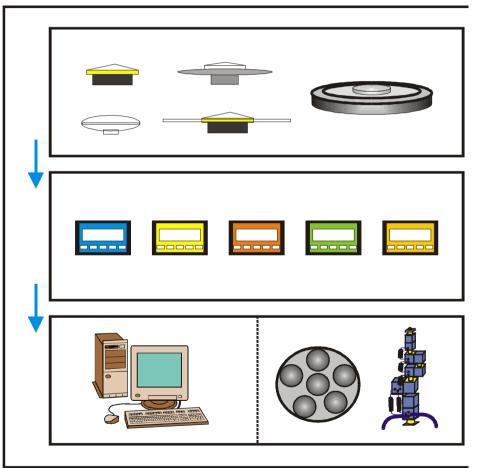

- Überlagerung von direktem und reflektiertem Signal
- weitere Effekte: Imaging, Beugung, Scatter, ...
- MP Fehler abhängig von
 - Satellit–Reflektor–Antennen Geometrie (Stationsabhängigkeit)
 - Reflektor (Material, Größe, Oberfläche, ...)
 - verwendeter Hard- und Software Technik
- Trägerphasen Multipath Fehler:

$$\Psi = \arctan \frac{\alpha * \sin(\theta)}{1 + a * \cos(\theta)} \qquad \theta = \frac{2\pi}{\lambda} * d$$


• Beispiel MP DOY 235/236 in typischer Situation



- MP Reduzierung durch Integration von Beobachtungen
 - effektiv über lange Zeit für statische Messungen
 - nicht anwendbar für RTK Messungen



- MP weitestgehend reduziert bzw. eliminiert durch siderische Beobachtungsdifferenzen
- Kombination mit Integration
 - anwendbar auf statische bzw. gering dynamische Messungen
 - nicht anwendbar für RTK Messungen

 Verringerung durch Antennen (sorgfältige Stationswahl)

 verbesserte Empfänger–Technologie und Signalverarbeitung (nur Code–Messung)

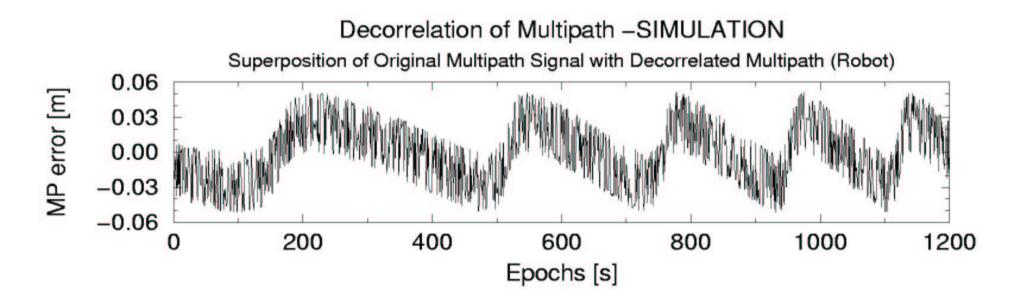
 Korrekturen aus Beobachtungsdaten (spezielle Mess-Prozeduren)

- Stationsauswahl: spezielle Anforderungen ...
- Antennenauswahl: Kompromiss ...
 - Grundplatte (Form, Material, Oberfläche), Gain, Arrays,
- Empfängertechnologie: hauptsächlich Code MP ...
 - verbesserte Korrelator–Technik, Trägerphasenglättung, Kombinationen
 (Antennen Felder + Digitale Signalverarbeitung) ...
- Beobachtungsdaten: auch Trägerphasen ...
 - CN0 .../ adaptive Filter .../ regionale Netzte .../ Antennenfelder .../ AMCS
 (UNAVCO) .../ ...
- Einschränkungen/Grenzen:
 - Annahmen (Gain, PCV, MP) / nur Linearkombinationen / nur relativ ...

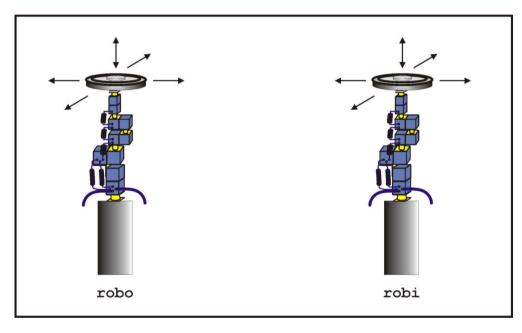
Absolute PCV Kalibrierung

- Operationelles und hoch genaues Echtzeitverfahren
- Trennung von PCV und MP
- absolute stationsunabhängige PCV
- hochaufgelöste präzise PCV
 - Std.abwg. L1, L2 PCV: 0.2 to 0.4 mm
 - Wiedeholbarkeit: 1 mm mean, außer Horizont

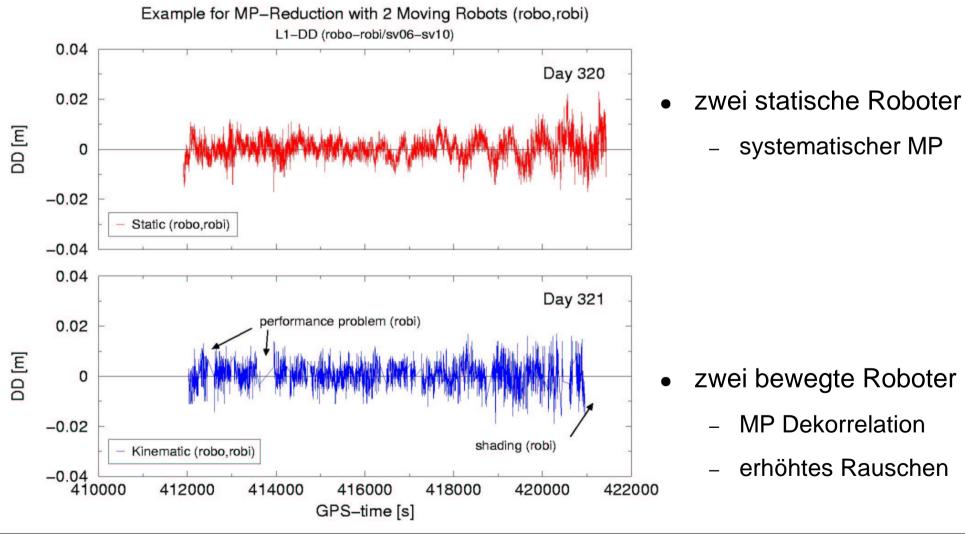
 individuelle absolute PCV Antennenkorrekturen Vorraussetzung für MP Kalibrierung



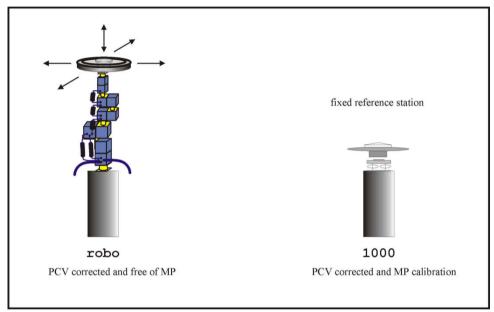
- systematischer MP (statische Station)
- lineare Bewegung (der Antenna auf Reflektor zu)
- kreisförmige Bewegung (der Antenne)
- Roboterbewegung (pseudozufällig)
 - => Dekorrelation



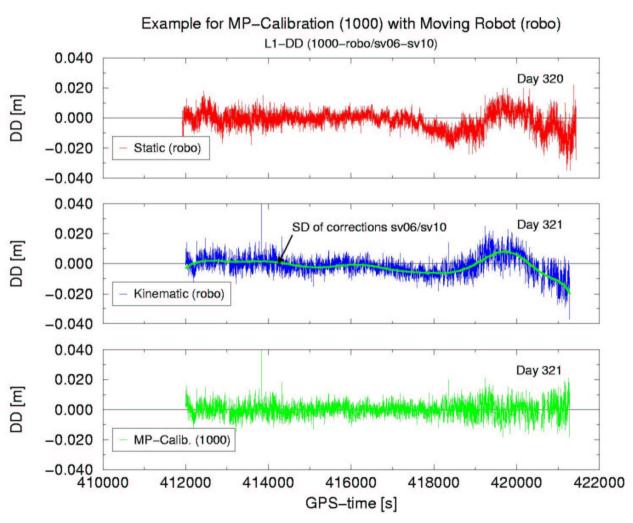
- Dekorrelation des MP zwischen zwei Stationen
- MP der bewegten Station wird "verrauscht" ("nosified/randomized")
- MP der statischen Station bleibt erhalten
- absoluter MP (bezogen auf eine Station)



- Verifikationstest
 - absolute PCV korrigiert
 - pseudo-zufälligeAntennenbewegungen mit Robotern
 - Bereich +/– 2 Wellenlängen von zentrierter Position
 - Zentrierung der Beobachtungen mit genau bekannter Antennenposition
 - statische Messpausen
- "Verrauschen" des MP
- systematische MP Effekte eliminiert
- Dekorrelation

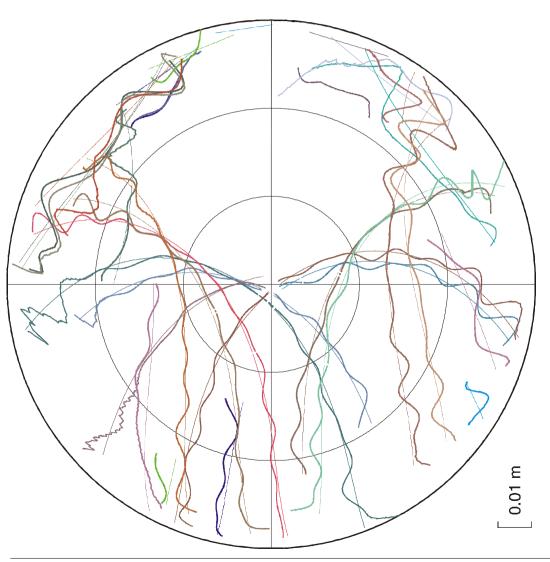


Absolute Multipath Kalibrierung



- Antennenbewegungen mit Roboter
 - PCV korrigiert
 - "Verrauschen" des MP
 - Dekorrelation
- statische Station
 - Datenaufzeichnung
- Kalibrierung Trägerphasen MP L1 und L2 (Post–Processing)
 - Single Difference SD
 - Post–Processing

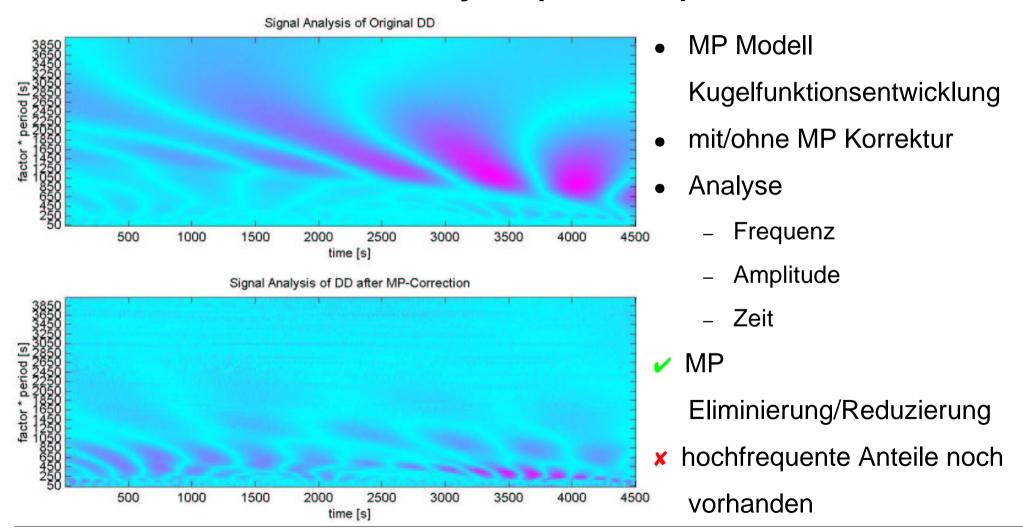
Absolute Multipath Kalibrierung



- statischer Roboter/ statische Station
 - (L1 DD/MP 1000+robo)
- bewegter Roboter/ statische Station
 - Signal Kalibrierung (L1
 DD-MP robo)/geschätzte
 Korrektur (L1 DD/MP
 1000)
 - bewegter Roboter/
 kalibrierte Station (L1 DD

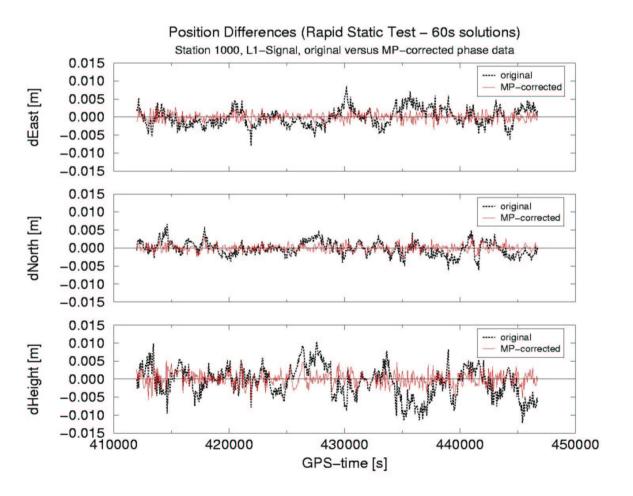
 -MP 1000+robo)

Absolute Multipath Korrekturen



- Ergebnis (Sky–Plot)
 - absolute MP Korrektur
 - L1 Signal
 - nur 14 h Beobachtungen
 - Kugelfunktionsentwicklung
- MP Trennung
- MP Kalibrierung
- mathematischesModell/Repräsentation

Absolute Multipath Korrekturen


Wavelet Analyse (1D dbl0)

Absolute Multipath Korrekturen

im Positionsraum

- Kurzzeit-Statik Test
- 60 s Positionslösung
- mit/ohne MP Korrektur
 (Roboter in Bewegung!)
- reiner MP Einfluss auf eine Station
- MP Korrekturen
- Verbesserung L1/L0

Tschebychev Polynome

- verbessertes Mathematisches Modell zur MP Modellierung
 - Tschebychev–Polynome
 - satellitenspurabhängige Polynome mit hoher Auflösung
 - ca. 10.000 Parameter pro Station und Signal
 - Berücksichtigung der Kreuzungsbedingung (MP (PRN_i) == MP (PRN_k))
- verbesserte Repräsentation der MP Korrekturen
 - Tschebychev–Polynome

Tschebychev Polynome

- Ergebnis (Sky–Plot)
 - absolute MP Korrektur
 - Tschebychev-Polynome(Grad 50)
 - L1 Signal
 - Satellitenspuren
 - MP als thermale Signature
 - 48 h Beobachtungen

GMT 2002 May 21 04:36:10

Weitere Entwicklung (1)

- Roboterbewegung
 - konstante Bewegung ohne statische Messpausen
 - kinematische GPS Datenerfassung
 - gegenwärtig Modifikation Hard– und Software (Roboter)
 - GPS Zeitsignal (PPS) für synchronisierte
 Roboterpositionsbestimmung
- Verwendung externer Frequenznormale
- Mathematische Modelle/Repäsentation
 - Berücksichtigung von MP Unstetigkeiten
 - Tschebychev–Polynome
 - Kugelfunktionsentwicklung, Korrekturtabelle, nicht zweckmäßig

Weitere Entwicklung (2)

- Weitere Verifikationen, MP Wiederholbarkeit
 Satellitenkonstellation, Wetterabhängigkeit, ...
- Vefahren zur Detektion von MP-Änderungen/Bedingungen
- Interpolationsverfahren bei Satellitenbahnänderungen
- indirekte Kalibrierung in Netzen von Referenzstationen über einige absolut MP-kalibrierte Stationen und redundante Information/strenge Zustandsmodellierung

Zusammenfassung

- Trägerphasen MP wichtige Fehlerkomponente (e.g. RTK, Vernetzungen, ...)
- Trennung von PCV/MP notwendig
- absolute PCV Feldkalibrierung verfügbar
- neuer Ansatz f
 ür Absolute MP Kalibrierung
 - präziser Roboter, 3D (pseudo-)zufällige Bewegung, Zentrierung der Beobachtungen
 - Dekorrelation des MP, Systematiken eliminiert, keine Annahmen
- MP Trägerphasenkorrekturen bestimmbar
 - absolut, für Beobachtungsgrößen L1 und L2, keine Annahmen
- Modifikationen f
 ür "operationellen" Einsatz
 - Roboterbewegung, mathematisches Modell, ...
- Einschränkung
 - Berücksichtigung von Wetteränderungen, Aufwand, ...

Acknowledgments

 Die Arbeiten sind durch das Bundesministerium für Bildung, Forschung und Technologie (BMBF) und das Deutsche Zentrum für Luft– und Raumfahrt (DLR) unter der Nummer 50NA9809 gefördert.

