Network RTK in Areas with High Geodynamic Activity

Gerhard Wübbena, Mark Bachmann, Martin Schmitz, Andreas Bagge

Geo++® GmbH
D-30827 Garbsen, Germany
www.geopp.de
Organization

- Introduction
- GNTRANS
 - Model/Properties/Principle
 - Modern Coordinate Systems
 - Major Geotectonic Plates
 - PAS Network in Japan
 - Japanese Geodetic Datum 2000
 - Magnitude of Geodynamics in Japan
 - Accuracy of GNTRANS Module Japan
 - Update of GNTRANS Module
 - Providing GNTRANS Transformation
- Summary
Introduction

- multiple permanent GNSS reference stations
- **RTK-networks state-of-the-art** application providing
 - RTK services
 - DGNSS services
- **demand** of RTK service users for
 - consistency of framework
 - integrated access to user datum
- **pre-requisite** of RTK service provider
 - up-to-date coordinates of reference stations
 - optimum performance of RTK network
- **need** of RTK-network to provide transformation
GNTRANS

- development of Geo++ GNTRANS
 - GNTRANS transformation model can account for
 - varieties of local datum
 - distortions of current networks
 - high geodynamic activity
 - GNTRANS transformation modules
 - Germany-wide DB_REF* module
 - local or regional patches in Germany
 - Japan-wide module
GNTRANS – Model

- multistage transformation
- applicable stages
 - 7P- transformation
 - continuous functional transformation
 - mathematical functional approach to describe remaining residuals after 7P- transformation or directly residuals
- stochastic part
 - stochastic prediction of remaining discrepancies considering topological neighborhood (decorrelation along topology of discontinuity)
GNTRANS – Model Properties

- properties of transformation models
- preservation of adjacent metric properties
- uniqueness/standardized
- homogeneity
- continuity
- consideration of discontinuities
- biuniqueness (one-to-one mapping)
Principle of GNTRANS
Coordinate System Transformation

“reference system” (e.g. ITRF)

7P₁ | datum (7P) | 7P₂

X, Y, Z

(a, f₁) | ellipsoid | (a, f₂)

φ, λ, h

proj₁ | projection | proj₂

R, H, h

N₁ | geoid (H=N+h) | N₂

R, H, H

system 1

system 2
Major Geotectonic Plates
Modern Coordinate Systems

• three-dimensional coordinate system
 • geocentric, i.e. earth's center-of-mass origin (in practice within a few cm)
 • Z-axis aligned with the earth's axis of rotation (IERS reference pole)
 • X-axis IERS reference meridian
 • Y-axis completes right-handed coordinate system
• why?
 • satellite geodesy, ...
 • accuracy, consistency, internationally, globally, ...
• e.g. WGS 84, ITRS/ITRF xx, ETRS/ETRF xx, ...
ITRF Coordinates

- ITRF positions characteristics are generally
 - accuracy of a few centimeters or better
 - accurate even over continental or global distances
 - ongoing tectonic plate motion (continental drift) as well as other forms of crustal motion must be accounted for at this level of accuracy
 - ITRF positional coordinates valid for a specified epoch date, and appropriate velocities must be applied to estimate positional coordinates for any other date
 - relative to ITRF, even points located on a stable plate move continuously (e.g. North American plate at a rate of about 2.5 cm/yr)

extracted from http://www.ngs.noaa.gov/CORS/metadata1/
PAS Network in Japan

- Positioning Augmentation Services (PAS)
 - Mitsubishi Electric Corporation (MELCO)
 - GPS RTK network
 - using approx. 350 stations of GEONET network
 - commercially operated since September 2003

- GPS Earth Observation Network (GEONET)
 - Geographical Survey Institute (GSI)
 - established since 1994 to monitor crustal deformation
 - 1200 stations throughout Japan
 - typical separation 25 km
 - sub-set of stations transfer real time data
 - 1 Hz data provided to commercial users
Japanese Geodetic Datum 2000

- Geographical Survey Institute (GSI)
 - constructed new framework
 - referring to ITRF94 at epoch of 1997.0

 - using domestic VLBI stations
 - 950 stations of GEONET
 - first- to third-order triangulation points (resurvey and re-computation)
 - GRS80 ellipsoid
 - since April 1, 2002
Magnitude of Geodynamics in Japan

- **station velocities** (two VLBI anchor stations of JGD2000)

<table>
<thead>
<tr>
<th>station velocity (ITRF2000)</th>
<th>latitude m/yr</th>
<th>longitude m/yr</th>
<th>height m/yr</th>
<th>3D m/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KASHIMA</td>
<td>-0.0116</td>
<td>-0.0038</td>
<td>-0.0041</td>
<td>0.0129</td>
</tr>
<tr>
<td>SHINTOTSUKAWA</td>
<td>0.0215</td>
<td>-0.0156</td>
<td>0.0230</td>
<td>0.0351</td>
</tr>
</tbody>
</table>

- **station movements** (GEONET network)

<table>
<thead>
<tr>
<th>coordinate differences (930)</th>
<th>latitude m</th>
<th>longitude m</th>
<th>height m</th>
</tr>
</thead>
<tbody>
<tr>
<td>after 7yrs</td>
<td>min</td>
<td>max</td>
<td>mean</td>
</tr>
<tr>
<td></td>
<td>-0.618</td>
<td>0.105</td>
<td>-0.132</td>
</tr>
<tr>
<td></td>
<td>-0.132</td>
<td>0.838</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>-0.390</td>
<td>0.043</td>
<td>-0.107</td>
</tr>
</tbody>
</table>
Principle of GNTRANS Transformation
JGD2000/JGD2000 current Epoch

“reference system” (e.g. ITRF)

- datum (7P)
 - X, Y, Z
- ellipsoid
 - φ, λ, h
- projection
 - R, H, h (distortion free)

GNTRANS

- vertical adjustment
 - R, H, h
- horizontal adjustment
 - R, H, h

Geo++®
Differences JGD2000/JGD2000 2003.9

height differences before and after transformation
Magnitude of Position Changes

north-south component

east-west component
Magnitude of Height Changes

height component
Accuracy of GNTRANS Module Japan

- internal accuracy
- standard deviation derived from given station coordinates before transformation

<table>
<thead>
<tr>
<th>area</th>
<th>sN [m]</th>
<th>sE [m]</th>
<th>sh [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>0.149</td>
<td>0.119</td>
<td>0.123</td>
</tr>
</tbody>
</table>

- standard deviation derived from given station coordinates after transformation

<table>
<thead>
<tr>
<th>area</th>
<th>sN [m]</th>
<th>sE [m]</th>
<th>sh [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>0.003</td>
<td>0.003</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Update of GNTRANS Module

- situation in Japan
 - continuously deformation of network due to tectonic movements (dynamic datum)
 - maintain temporal consistency of framework by removing crustal deformation
 - frequent update of GNTRANS module using GEONET coordinates (1200 stations)
 - important for public survey using RTK network
 - agreement with Japan Geodetic Datum 2000
Providing GNTRANS Transformation

- RTK network service provides:
 - transmitting GNTRANS module parameter
 - position correction computed at user site
 - using same simplex communication link as GPS data
 - broadcast solution

- RTK network user:
 - sends coordinate to provider
 - GNTRANS computation at RTK network center
 - modification of GPS correction data
 - duplex communication link required
Summary

• RTK networks in high geodynamic areas
 • coordinates constantly changing
 • frequently update of reference station coordinates required
 • consistency of framework required
• RTK network service users
 • demand for consistency and transformation
• GNTRANS model applied to compensate tectonic movements of coordinates
 • applicable within RTK network service
 • demonstrated with GNTRANS module Japan
for publications on the presented topic refer also to

www.geopp.com

or directly to

http://www.geopp.com/publications/english/lit_e.htm