

Processing of High Precision Networks with the Multi-Station Post-Processing Software Geo++ GEONAP

Martin Schmitz, Gerald Boettcher, Gerhard Wübbena

Geo++® GmbH
D-30827 Garbsen, Germany
www.geopp.de

Organization

- Introduction/High Precision DB_REF Network
- · Geo++® GEONAP
- Benefit of Undifferenced Processing
- General DB_REF Network Project Terms
- Processing of GPS Sessions and Network
- Findings from DB_REF Network
- Summary

Introduction

- satellite-based surveying techniques
 - applications steadily increasing
 - · accuracy range of: mm ... cm ... dm ... m
 - · use of global cartesian coordinate systems
 - homogeneous coordinates
- problems in application
 - inhomogeneous coordinate systems basis of existing data
 - transformation of coordinates necessary
 - not sufficient density of known points in homogeneous network

Introduction

DB Netz AG D-60486 Frankfurt

Die Bahn DB

- processing of a high precision network
 - project of German railway company DB AG*
 - applications covering Germany
 - establishing Germany-wide homogeneously coordinated GPS reference stations
 - · absolute positioning in official/legal ETRS 89 framework
 - high accuracy requirements
 - enabling rigorous use of modern surveying methods e.g. satellite-based track surveying
 - processing with Geo++® GEONAP software

Geo++® GEONAP

- GEONAP Geodetic Navstar Positioning
 - multi-signal, multi-station, multi-session adjustment (rigorous adjustment of different signals and multiple kinematic and/or static stations, rigorous 3D network adjustment)
 - undifferenced observable with complete variance-covariance estimation
 - consideration of all major error components
- · development and maintenance by Geo++® since 1990
- advanced GPS software
 - for static and kinematic applications
 - for small, large and regional applications
 - different accuracy levels from mm ... m

Benefit of Undifferenced Processing

- · undifferenced processing using parameter estimation
 - absolute coordinates
 - · complete variance-covariance matrix
 - · rigorous multi-station sessions
- network adjustment of sessions
 - · rigorous 3D adjustment of absolute coordinates
 - combines multi-station sessions
 - comparable of multi-station adjustment in one step (only correlation of not simultaneously processed stations is missing)
- realistic accuracy measure (standard deviation)
 - no scaling of internal accuracy measure necessary

General DB_REF Network Project Terms

- establishing of DB_REF network
 - partioning of railway network
 - 16 states into 10 lots
 - engineering/surveying companies or working groups for local works/GPS observations
 - one contractor to provide reference data i.e.
 SAPOS network (German Satellite Positioning Service)
 - one contractor for processing and adjustment of complete network

Time Frame

- start of project in 2000 at DB AG
- contracts on GPS measurements to private engineering companies
- start of measurements October 2001
 - reconnaissance, establishing of markers, GPS observation, documentation in 10 lots, generally state-wide
- processing of GPS-observations and network adjustment by Geo++ GmbH
- status September 2004
 - · initial measurements/processing finished
 - execution/integration of repeated measurements finished
 - currently performing final analysis

Location Requirements

Geo++®

- DB_REF network
 - save and stable location
 - 4 km distances along tracks
 - not necessarily beside the tracks (close to tracks)
 - generally on bridge constructions
 - suited as GNSS reference station
 - suited for data communication

Observation Scheme and Accuracy

- specified observations in DB_REF network
- session design
 - observation of all directly adjacent stations and one overlapping connection every 20-30 km
- accuracy goals
 - 3D accuracy (2 sigma)
 absolute < 10 mm
 relative < 5 mm
 (adjacent stations)

Requirements of GPS Observations

- minimum diameter of antenna ground plane 28 cm
- · individual, absolute, calibrated antennas
- at least two times 30 min observation time
- antenna height readings before and after observation using two different scales (m and ")
- new set-up for every session (change in height of 5 cm)
- check of data quality (UNAVCO TEQC)
 - · data rate 10 s, elevation mask 5 deg
 - · at least 6 satellites simultaneously over 30 min
 - number of cycle slips <1% of all observations above 10 deg
- minimum number/distance to reference stations
 - · 1 station < 25 km
 - · 2 stations < 28 km
 - · 3 stations < 32 km

GPS Observation Summary

- DB_REF network
 - status September 2004
 - observations from November 2001 to August 2004
 - · ~7500 new stations
 - ~21000 datasets from new stations
 - · ~8100 sessions
 - ~18200 datasets from SAPOS stations and C-network stations

Processing of GPS Sessions and Network

- Geo++ GEONAP/ GnHPPS NXO
 - automated import
 - digital data flow using RINEX Header
 - special procedures
 - ensure correct data import
 - · assign sessions
 - assign reference stations

Details on GPS Session Processing

GEONAP/GnHPPS NXO

- consistent absolute antenna corrections
- undifferenced GPS approach
- simultaneous L1&L2 processing
- estimation of ionosphere
- temporal and spatial estimation of troposphere
- · precise ephemeris
- complete variance-covariance matrix
- use of SAPOS reference station coordinates
 - however, own estimation of SAPOS coordinates to proceed with project

Absolute ETRS 89 Positioning by SAPOS/C-Network

- Geo++®
 - BKG LGN

2 G \

Working Committee of the Surveying Authorities of the of the Federal Republic of Germany Federal Agency for Cartography and Geodesy Landesvermessung + Geobasisinformation Niedersach

- SAPOS stations (ca. 250) in Germany
- coordinated in ETRS 89
- detection of discrepancies
 - within the networks
 - between states
- · consequence
 - Geo++ coordinate estimation
 - "Diagnoseausgleichung" of AdV by BKG/LGN
- new official coordinates available January 2004
- densification through C-network

Network Processing Procedure

beforehand: determination of homogeneous coordinates

of SAPOS- and C- network with GEONAP

(not planned nor intended in 2001)

· finally: transformation to new

official SAPOS-coordinates

(completely available January 2004)

· analysis: (session- and) network- adjustment in

five blocks (lots); determination of measurements

to be repeated (data quality, gross errors)

network: German-wide, multiple stage,

rigorous 3D Network adjustment

with complete variance-covariance matrix

result: homogeneous ETRF 89 coordinates of

~7500 new stations

Details on Network Adjustment

- network adjustment
 - rigorous 3D adjustment (absolute coordinates) of all session solutions
 - using complete variance-covariance matrix
- multistage network adjustment
 - · initial stage general check
 - first stage statistical gross error detection
 - second stage detection of large residuals
- restriction due to processing time and processing hardware
 - partioning of complete Germany-wide network adjustment

Achieved Relative Accuracy Snapshot from Network

relative horizontal accuracy

relative height accuracy

Findings from DB_REF Network

- establishing of German-wide DB_REF network
 - advantages of measurements and processing in one big effort
 - unique processing software and strategy
 - antenna correction
 - · rigorous 3D network adjustment
 - control of higher order/datum defining network
 - detection of residuals/discrepancies
 - ensuring and maintaining consistency
 - compensation of site changes
 - finally enables high precision

Summary

- GEONAP processing capabilities revisited
- example of DB_REF network processing
- high accuracy and homogeneity
 - unique processing software and strategy of complete network
 - observation and processing in one big effort
 - · consistency check of higher oder network
- homogeneous coordinates in official/legal framework ETRS 89 system
- enables optimal application of latest (satellite-based) surveying techniques

for publications on the presented topic refer also to

www.geopp.com

or directly to

http://www.geopp.com/publications/english/lit_e.htm