

On GNSS Station Calibration of Antenna Near-Field Effects in RTK-Networks

Gerhard Wübbena, Martin Schmitz

Geo++® GmbH 30827 Garbsen Germany

www.geopp.com

International Symposium on GNSS, Space-based and Ground-based Augmentation Systems and Applications, October 10-11, 2011, Berlin, Germany

Overview

- Motivation
- Near-Field Effects / Near-Field Multipath
 - Cause and Impact
 - Robot Calibration
- Station Dependent Errors
 - Separation of Near-Field and Far-Field Effects
 - Different Treatments
- Near-Field Calibration (In-Situ) of single sites CaNF
 - Principle, Setup, Results
- Near-Field Compensation in RTK-Networks CoNF
- Summary/Outlook

Motivation

- Issue of near-field (NF) effects is of increasing importance and interest in GNSS applications
- more and more problems due to the NF issue become obvious
 - antenna changes cause significant jumps in coordinate time series
 - non-modeled NF effects cause biased estimates for other parameters in a GNSS application
 - tropospheric zenith delay, tropospheric gradients,
 - coordinates
 - carrier phase ambiguities
 - ...
 - and therefore reduce the performance (accuracy, availability, reliability) of the GNSS applications

Motivation

- Strategies/methods for determination/correction/handling of NF effects are required to
- improve the accuracy, availability and reliability of GNSS applications
 - permanent reference stations, coordinate time series
 - RTK networks service performance and integrity
 - precise height determination using GNSS methods
 - kinematic platforms (strong NF effects of car roofs, in-situ calibration)

- ...

Near-Field Effects: Cause

- antenna near-field depends on
 - antenna type
 (plus radome construction, ...)
 - mount/setup (tripod, tribrach, adaption, ...)
 - station environment (pillar, roof, ...)
 - weather conditions (reflecting coefficient, snow, ...)
- effect on signals due to
 - reflection
 - diffraction
 - imaging / electro-magnetic inter-action

Near-Field Multipath: Theoretical Impact

model assumption: horizontal reflector

• pillar/pier setup

- high "spatial" wavelength
- effect in all elevation areas
- non-zero average
- systematic coordinate errors

- tripod setup $\int_{u=1}^{u=1}^{u=1}$ $\int_{u=1}^{u=1}^{u=1}$
 - low "spatial" wavelength
 - effect in all elevation areas
 - zero average over short

observation times

IGS Warning/Recommendation (Jim Ray, NGS, 2008)

BRFT **Thank You** for mounting your antennas away from reflecting surfaces!

from: Ray, J. (2008). Systematic Errors in GPS Position Estimates. IGS Workshop, May 11, Darmstadt, Germany.

Station Dependent Errors

- Geo++ philosophy: separation of individual error components
- PCV and multipath effects are most important station dependent errors
 dS = PCV + MP
 - PCV => absolute GNSS antenna calibration
 - multipath => difficult to calibrate and model highly variable total MP in an operational procedure
- Strategy: separation of near-field (NF) and far-field (FF) multipath

 $dS = PCV + MP_{NF} + MP_{FF}$

• Methods to determine and mitigate NF effects

In-Situ Station Calibration

Near-Field Multipath: Robot Calibration

- determination with precise robot calibration
 - standard deviation 0.2 bis 0.4 mm
 - repeatability 1 mm, except close to horizon
- representative near-field environment required
- constant geometric relation antenna/near-field despite movements of antenna
- calibration provides PCV + MPNF
- separation obtained through difference of calibration with/without near-field environment and antenna

Near-Field Multipath: eg Impact on DM-Type Chokering Antenna

- ASH700936D_M
- reconstruction head of pillar/tribrach
- \emptyset 19cm/ Δ Zeiss
- difference L0 PCV against regular calibration
 - 10-30° elevation

mean ca. 2 mm maximum 7 mm

- 40-70° elevation

mean ca. 2 mm maximum 3 mm

 impact in range domain!

Near-Field Multipath: eg Impact on DM-Type Chokering Antenna

- ASH700936D_M
- reconstruction head of pillar/tribrach
- $30x30 \text{ cm}/\Delta \text{ Zeiss}$
- difference L0 PCV against regular calibration
 - 10-30° elevation

mean ca. 2 mm maximum 6 mm

- 40-70° elevation

mean ca. 4 mm maximum 5 mm

 impact in range domain!

- TPSPG_A1 GNSS antenna
- 10 cm prism spacer and special construction with two ground planes ca. Ø 14 cm
- target device for classical 0,010 surveying 0,008
- L1 PCV difference against regular calibration
 - 10-30° elevation

mean ca. 3 mm maximum 6 mm

- 40-70° elevation

mean ca. 1 mm maximum 2 mm

- TPSPG_A1 GNSS antenna
- 10 cm prism spacer and special construction with two ground planes ca. Ø 14 cm
- target device for classical 0,010, surveying 0,008
- L2 PCV difference against regular calibration
 - 10-30° elevation

mean ca. 4 mm maximum 8 mm

- 40-70° Elevation

mean ca. 1 mm maximum 4 mm

Real Life Example from RTK Networking

- amplification for L0 PCV
- L0 PCV differences
 against
 - 10-30° elevation
 maximum -18 mn
 - 40-70° elevation maximum +5mm
- repeatability of five antenna constructions ca. 4 mm
- also individual PCV and near-field components of antennas present

Real Life Example from RTK Networking

- Kadaster, The Netherlands
- NETPOS RTK Network (31 stations)
- 81 control points of Dutch network
- 10 RTK measurements with 10 initializations each time
- without near-field correction
 - time and spatial dependent height errors
 - mean of systematic height error is 31 mm (81points)
- with near-field correction
 - free of systematic errors mean height difference is
 -2 mm (49 points)

	Error	Characteristic	Treatment
Antenna	PCV	elevation and azimuth dependent PCV	calibration of PCV using robot
Multipath	MP _{near-} field	long-periodic, systematic effect, bias	calibration of near-field effects using robot/ in-situ station calibration
	MP far-field	short-periodic, systematic effect	averaging over time, absolute s tation calibration or weighting (CN0) sidereal differences (GPS only)
Station Uncertainty		stable unterground, setup, monumentation	analysis of time series

Determining NF effects of a Reference Station

	Approach	Method
1	explicit determination	robot calibration (since 2002)
2	noisifying multipath	station calibration using robot (Böder et al. 2001)
3	averaging multipath	Multiple station setup (Wübbena et al. 2006)
4	determine near-field correction and weighting from L1 & L2 residuals	in situ station calibration with calibrated, multipath free equipment (method 1) - CaNF
5	determine near-field correction and weighting from L0 residuals in redundant setups	in situ station calibration/ NF compensation within a network of GNSS reference stations - CoNF
6	combination of approaches	use of some in situ calibrated stations (method 4) and apply it to constrain method 5 - CNF

In-Situ Site Calibration (CaNF): Near-Field Free Station

- individual absolute GNSS antenna calibration
- optimal control of near-field effect required
 - mock-up of top robot and mount
 - best approximation of all errors (near-field and PCV of antenna)

• top of robot with mount

International Symposium on GNSS, Space-based and Ground-based Augmentation Systems and Applications, October 10-11, 2011, Berlin, Germany

national Symposium on GNSS, Space-based and Ground-based Systems and Applications, October 10-11, 2011, Berlin, Germany

In-Situ Site-Calibration (CaNF): Near-Field Free Station

- mock-up of antenna's robot calibration
 - no near-field multipath
- high and slight setup on a pole (~ 3 m)
 - reducing far-field multipath
- short distances
 - no impact from atmospheric or orbit errors
- setup and system design
 - transportable
 - flexible
 - scalable
 - easy to use

In-Situ Site Calibration (CaNF): Setup

- Onear-field free temporary stations
- redundant setup with three stations (or more)
- stations must cover GNSS visibility of reference stations
- sophisticated GNSS receivers with coupled clocks

In-Situ Site Calibration (CaNF): Setup

- O reference stations to be calibrated
- original receiver substituted through in-situ calibration system receiver using antenna splitter
- coupled clock with NF-free stations
- 1 Hz data rate
- 0° cut-off
- at least 24 h data
- 9 days for complete
 GLONASS calibration

In-Situ Site Calibration (CaNF): Reference Stations

- experiment on Geo++ roof
- reference station on roof top (1000/1001)
 - close objects
 - flat reflectors
 - remote reflectors
- reference station on pillar (0007)
 - standard setup
 - pillar top is reflector
 - remote reflectors

International Symposium on GNSS, Space-based and Ground-based Augmentation Systems and Applications, October 10-11, 2011, Berlin, Germany

In-Situ Site Calibration: Residual Analysis

- 24h doy 282-283, 2009 reference station (roof top, 1000/1001)
- GPS L0 residuals shown
- basically no obstructions
- prominent band in N (280°-80°) up to ~10°-15° elevation
- up to 4 cm residual changes over small elevation range

In-Situ Site Calibration: Residual Analysis

- 24h doy 286-287, 2009 reference station (pillar, 0007)
- GPS L0 residuals shown
- obstructions in W (building) and NE (45°-90°, tree)
- alternating pattern reaching 30° elevation over complete azimuth range
- up to 2 ... 4 cm over small elevation range

In-Situ Calibration: Applying Correction/Weighting

- static GPS L0 processing with troposphere estimation
- standard approach and with in-situ correction/weighting applied
- difference to reference coordinates (horizontal GNSS, leveled height*)

ased and Ground-based , 2011, Berlin, Germany

CoNF – Compensation of Near-Field

- Compensation of Near-Field for all network stations
 - utilizes redundancy in GNSS networks
 - determines the near-field effect of all reference stations in a network
 - derives corrections and weighting schemes from non-differenced ionospheric free signal L0 residuals
 - L1/L2/L5 not fully accessible due to non-distinguishable ionospheric effects
 - elevation-azimuth dependent model

International Symposium on GNSS, Space-based and Ground-based Augmentation Systems and Applications, October 10-11, 2011, Berlin, Germany

GREF network 20 reference stations

- automatic procedure to estimate correction and weighting
- automatic application of correction and weighting

•

•

- Ò.
- iterative estimation from GREF network
- several days, 2011 reference station GOET
- GPS L0 residuals shown
- basically no obstructions
- prominent band in EW up to ~30°-60° elevation
- significant systematic residual changes

- Ô.
- iterative estimation from GREF network
- several days, 2011 reference station GOET
- GLO L0 residuals shown (frequency independent)
- basically no obstructions
- prominent band in EW up to ~30°-60° elevation
- significant systematic residual changes

- Ò
- iterative estimation from GREF network
- several days, 2011 reference station GOET
- GPS C1 residuals shown
- basically no obstructions

- iterative estimation from GREF network
- several days, 2011 reference station HUEG
- GPS L0 residuals shown
- basically no obstructions
- roof visible in plot

- iterative estimation from GREF network
- several days, 2011 reference station HUEG
- GLO L0 residuals shown (frequency independent)
- basically no obstructions
- roof visible in plot

- iterative estimation from GREF network
- several days, 2011 reference station HUEG
- GPS C1 residuals shown
- basically no obstructions

CNF – Calibration + Compensation of Near-Field

- Determination of NF corrections and weighting for all network stations and original signals
 - CaNF calibrations for some selected sites in a network
 - constraining CoNF with results from CaNF
 - separation of original signals (L1/L2/L5) instead of ionospheric free signal L0 becomes possible through appropriate ionospheric modelling
 - L1/L2/L5 corrections and weighing schemes for all network sites

Summary CaNF

CaNF (Calibration of Near-Field) of one single site

Determines the near-field and to some degree also the far-field multipath of one single site by deriving corrections from residuals for original signals L1/L2

Summary CoNF

CoNF (Compensation of Near-Field) for all network stations

Determines the near-field for all reference stations in a network by deriving corrections from residuals for ionospheric free signal LO.

Summary CNF

CNF = CaNF+CoNF (Calibration + Compensation of Near-Field)

Verification Network (7 RS, Rover: HOFB, 5 Min. Solutions)

HOFB 5 Min. Solutions (incl. Troposphere Estimates)

Differences to Mean

Without EAR correction

HOFB 5 Min. Solutions (incl. Troposphere Estimates)

Differences to Mean

With EAR correction

Summary/Outlook

- **NF** effects can significantly reduce performance of GNSS applications
- in-situ NF calibration/compensation models have been developed
 - combined approach using
 - robot calibration to obtain NF-free equipment
 - single site calibration utilizing NF free equipment (CaNF)
 - residual analysis in redundant GNSS CORS networks to compensate NF effects (CoNF)
 - combination of CaNF and CoNF to calibrate all network stations
 - NF correction and weighting models are obtained for all stations and signals
- Method is ready for operational use

References

- Hirt, C., M. Schmitz, U. Feldmann-Westendorff, G. Wübbena, C.-H. Jahn, G. Seeber (2010). Mutual validation of GNSS height measurements and high-precision geometric-astronomical leveling. GPS Solutions, online first, DOI 10.1007/s10291-010-0179-3, Springer.
- Dilßner, F., G. Seeber, G. Wübbena, M. Schmitz (2008). Impact of Near-Field Effects on the GNSS Position Solution. Presented at the International Technical Meeting, ION GNSS-08, Savannah, Georgia.
- Wübbena, G., M. Schmitz, M. Propp (2008). Sensibility of Dorne Margolin Chokering Antennas to Rainfall. Analysis of a Sprinkled Antenna Site on a Short-Baseline. Poster presented at the IGS Analysis Workshop 2008, June 2-6, Miami Beach, Florida.
- Wübbena, G., M. Schmitz, G. Boettcher (2006). Separation of Near-Field and Far-Field Multipath: New Strategies for Station Calibration. 10th EUPOS® ICS, November 23-24, Budapest, Hungary.
- Wübbena, G., M. Schmitz, G. Boettcher (2006). Near-field Effects on GNSS Sites: Analysis using Absolute Robot Calibrations and Procedures to Determine Corrections. Submitted to Proceedings of the IGS Workshop 2006 Perspectives and Visions for 2010 and beyond, May 8-12, ESOC, Darmstadt, Germany.
- Wübbena, G., M. Schmitz, G. Boettcher (2003). Zum Einfluss des Antennennahfeldes. 5. GPS-Antennen-Workshop 2003, B. Görres, J. Campbell, G. Seeber, Geodätisches Institut der Universität Bonn und Institut für Erdmessung der Universität Hannover, Im Rahmen des 5. SPOS-Symposiums. 3. November 2003, Frankfurt/Main.
- Böder, V., F. Menge, G. Seeber, G. Wübbena, M. Schmitz (2001). How to Deal With Station Dependent Errors -New Developments of the Absolute Calibration of PCV and Phase-Multipath With a Precise Robot. Presented at the International Technical Meeting, ION GPS-01, Salt Lake City, Utah.

An Almost Philosophical Question ...

obviously there are systematic errors through MPnear-field

Is it possible to determine GNSS heights without any systematic error?

- no, without considering MPnear-field
- yes, with taking MPnear-field into account
 - with absolute MPnear-field correction heights are free of systematic errors
- recommendation
 - analysis and assessment of additional strategies
 - avoiding MPnear-field