

RTK in Industry and Practical Work

Martin Schmitz

Geo++[®] GmbH 30827 Garbsen, Germany www.geopp.de

Motivation to Select a Topic ...

- Geo++ is a company with main focus on
 - development of GNSS software and applications
 - system conception and design
 - research and analysis
 - project management
 - consulting
- in all fields of GNSS-based positioning and navigation

- **RTK in Industry** and Practical Work
 - variety of GNSS applications with requirements
 - accuracy, static vs kinematic, real-time vs post-processing, near-real-time processing, integrity, accessibility, ...

RTK/PPP – Ideal System

- reception of all necessary reference and correction data
- flexible communication using different communication media (uni- or bi-directional)
- determination of absolute position
- (better) 1 cm accuracy
 - everywhere
 - every time
 - static/kinematic

Geo++ figure from the late 1990s

Motivation

- Geo++ is a company with main focus on
 - development of GNSS software and applications
 - research and analysis
 - project management
 - consulting
- in all fields of GNSS-based positioning and navigation

- **RTK in Industry** and Practical Work
 - variety of GNSS applications with requirements
 - accuracy, static vs kinematic, realtime vs post-processing, nearreal-time processing, integrity, accessibility, ...
- RTK in Industry and Practical Work
 - there are important issues in practical work while setting-up RTK Networks

Practical Work - Setting-Up a RTK Network

(incomplete list of keywords)

- GNSS antenna correction
 - antenna type, consistent corrections, antenna orientations NRP, reference point ARP, PCV, GDV, GLONASS PCV, satellite PCV, ...
- **station setup**/environment
 - station quality, multipath, near-field multipath, far-field multipath, ...
- coordinates
 - verification, determination, official and technical coordinates, Datum, transformation to ITRF, plate-tectonics, station velocity, tectonic events, site displacement, local transformation, national system, height system, geoid, ...

Practical Work - Setting-Up a RTK Network

(incomplete list of keywords)

- GNSS satellite and receiver biases
 - receiver type, firmware, signals, GLONASS Code-Phase Bias, biases like QIX* biases, 125* biases, GGG* biases, ...
- dissemination of GNSS correction data
 - standardized format, parametrization of corrections (PRS, VRS, FKP, MAC, SSR), broadcast service vs bi-directional service, communication link, bandwidth requirements, scalable services, access control, encryption, ...

* Geo++ terminology for biases

Outline

- Practical Work Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact
 - GNSS Antenna Correction (1)
 - Some Details on absolute PCV Field Calibration
 - GNSS Antenna Correction (2)
 - Insight from Series of GNSS Antenna Calibrations
 - GNSS Antenna Group Delay Variation
 - Near- and Far-Field Impact
 - Excursion GNSS Satellite Antenna
 - Excursion Historical Review
 - Summary/Outlook

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations

GNSS Antenna Group Delay Variation

Near- and Far-Field Impact

Excursion - GNSS Satellite Antenna

Excursion - Historical Review

Summary/Outlook

status late 1990s

 problems with antenna corrections from existing relative field calibration methods

GNSS Antenna Correction

- **problems** with antenna corrections from absolute chamber calibration
- phase center and variation (PCV) corrections urgently needed for GPS (and later for GLONASS) applications with mixed antenna types (eg Network RTK, precise engineering tasks, ...)

GNSS Antenna Correction

- requirements specified for an GNSS antenna calibration method
 - separation of phase center and variation (PCV) and multipath effects (MP)
 - **absolute PCV** (independent from any reference antenna)
 - **high** resolution and **accuracy** of determined PCV
 - independent from station and location (eg MP and geographic latitude)
 - field calibration method

REASURE

GPS L0 PCV without offset)

Absolute* vs Relative PCV Corrections

- relative PCV corrections
 - reference antenna defined AOAD/M_T NONE
 - normalization of PCV of any antenna to reference antenna by relative calibration
- systematic biases caused by relative PCV are
 - increasing with distance
 - affecting modelling (eg troposphere)
 - affecting ambiguity resolution
- absolute PCV corrections
 - independent from reference antenna

GNSS Antenna Calibration

- characteristics of Geo++ GNPCV service today
- primary task of calibration
 - absolute*
 - phase center and -variation (PCV)
- robot excellent instrument to determine additional parameters
 - signal strength (carrier-to-noise, CNO pattern)
 - Group Delay Variations (GDV) / Code calibration
 - near-field impact on antenna
- separation of multipath in near-field and far-field effects
 - absolute **station calibration** of multipath
- antenna calibration provides (since 2000, GLO 2006, GDV 2008)
 - GPS + GLO L1 and L2 PCV
 - GPS + GLO S1 and S2 CNV
 - GPS + GLO P1 and P2 GDV

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations

GNSS Antenna Group Delay Variation

Near- and Far-Field Impact

Excursion - GNSS Satellite Antenna

Excursion - Historical Review

Summary/Outlook

Development of Automated Antenna Mount

- orientation changes of GNSS antenna required
- mount for rotating and tilting GNSS antenna
 - precise, fixed and stable rotation point
 - automation
 - operational procedure
- finally use of a **robot**
 - fast changes
 - automated robot guidance
 - real-time

1996

2000

close cooperation with Institut für Erdmessung, **Universität, Hannover**

Multipath Elimination Techniques and PCV Separation

- first approach (1997)
 - siderial differences in post-processing
 - observation on two days
 - same geometry/environment eliminates MP
- current approach (since 2000)
 - short-term differences in real-time
 - same MP for subsequent epochs eliminates MP
- PCV reintroduced by orientation changes (rotations and tilts)

Details on absolute PCV Field Calibration

- homogeneous coverage of antenna
 - 6000 8000 different robot positions
- dynamic robot guidance in real-time
 - depending on satellite constellation
 - optimizes observation time
- dynamic elevations mask
 - uses high elevation satellites (>18°)
 - increase of cut-off in tilted positions
 - uses negative elevation (-5°)
- stochastic modeling of remaining multipath for every satellite

GNSS observation coverage

Observations on Antenna Hemisphere - 24h Static (on MSD7)

"24h Static azel"

relative antenna calibration

absolute antenna calibration

Calibration of GLONASS PCV

- GLONASS has different frequencies for each satellite
- need for frequency dependent GLO PCV
 - determination of DeltaPCV (change of PCV with frequency)
 - metric PCV obtained from combination of GPS PCV und GLO DeltaPCV
 - GLO PCV can be extrapolated to any other GLO frequencies (ie reference frequency is k=0)

- GLO DeltaPCV [m/25.0 MHz]
- GPS PCV plus GLO frequency difference * GLO DeltaPCV
 - GLO_PCV_L1 [m] = GPS_PCV_L1 + ((1602.0 + channel_number * 0.5625) - 1575.42) / 25.0 * GLO_DeltaPCV_L1
 - GLO_PCV_L2 [m] = GPS_PCV_L2 +

((1246.0 + channel_number * 0.4375) - 1227.60) / 25.0 * GLO_DeltaPCV_L2

Calibration of GLONASS PCV

- frequency dependent GLO PCV
- converted to metric PCV
- frequency channel **k= -7 ... +6**
- comparison of dPCV , reference is PCV for k=0
- antenna chosen for example has large DeltaPCV
- magnitude in dPCV difference
 GLO L1/L2 Frequencies
 about 0.5 ... 1.0 mm
- difference compared to GPS up to several mm

example for GLO L1 PCV JAV_RINGANT_G3T NONE

GNSS Antenna Calibration

- Geo++ GNPCV systems
- robot-based absolute GNSS antenna field calibration
- development by Geo++ in cooperation with Institut f
 ür Erdmessung, Universit
 ät, Hannover
- marketing and enhancement/development through Geo++ since 2000
- in total six working Geo++ GNPCV systems
 - 2000 Geo++, **Garbsen** , Germany (to be retired)
 - 2000 ife, **Hannover**, Germany
 - 2005 SenB, Berlin, Germany (retired)
 - 2009 Geo++, **Garbsen**, Germany
 - 2012 GSA, Canberra, Australia
 - 2013 SenB, **Berlin**, Germany
 - 2018 Geo++, **Garbsen**, Germany (to be setup)

three robot-test, Mai 2012, Geo++ Garbsen

Institut für Erdmessung, Universität Hannover, Germany	ſ
Senatsverwaltung für Stadtentwicklung Berlin, Germany	TREA
Geoscience Australia, Canberra, Australia	TRAINING RI APPLICATION SUPPORT ins UL

ife SenB GSA

Repeatability of Phase Offsets and Variations

- repeatability of absolute PCV antenna calibration \bullet with robot
- three different GNPCV robots ${\color{black}\bullet}$

robot	operated
Geo++	in Garbsen
ife	in Hannover
Berlin	tested in Garbsen

individual ASH700936D_M antenna calibrated on •

robot	date of PCV calibratior
Geo++	2005-08-08
Berlin	2006-02-15
ife	2006-01-14

TREASURE Autumn School, 19-22 November, Bath, UK

© 2018 Geo++[®] GmbH

ife Berlin Institut für Erdmessung, Universität Hannover, Germany Senatsverwaltung für Stadtentwicklung Berlin, Germany

Repeatability of Phase Offsets and Variations

LO GPS difference of PCV

- individual ASH700936D_M antenna
- three different robots
- ionospheric free signal
- magnitude PCV differences

L0 < 1 mm above 10 deg

• rule-of-thumb:

LO factor 3 worse than original signal

Elevation Dependent Difference from Type Mean

ASH700936D_M#CR14348, L0 PCV

- B_2006-02-15 - G_2005-08-08 - ← L_2006-01-14

Repeatability Individual Antenna

Repeatability after 2 Years

- geodetic antenna ASH700936D_M SNOW
- differences LO PCV: average 1-2 mm
- maximum at horizon about 4 mm

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations GNSS Antenna Group Delay Variation Near- and Far-Field Impact Excursion - GNSS Satellite Antenna Excursion - Historical Review Summary/Outlook

GNSS Antenna Calibration

- phase variation (PCV without offset) for different antenna types
- 266 antenna types
- Geo++ GNPCVDB database
- **GPS LO** signal
- PCV difference to GPPNULLANTENNA
- magnitude of PCV
 - up to several cm
 - in high elevations

L0 ionospheric free signal rule-of thumb LO effects larger by factor of 3 than original signals (L1, L2)

Elevation Dependent Difference from Type Mean GPPNULLANTENNA__NONE, SN:UNKNOWN GPS GO PCV [m]

0.02500

0.02000

0.01500

0.01000

0.00500

0.0000

-0.0050

-0.01000

-0.01500

-0.02000

-0.02500

-0.03000

-0.03500

10

20

Ξ

PCV

09

ഗ Ц С

© 2018 Geo++[®] GmbH

Absolute GPS L1 PCV Pattern

FREASURE

 \bullet

Absolute GPS L2 PCV Pattern

November, Bath, UK

 \bullet

ullet

Absolute GPS L1 PCV and Standard Deviation

٤

PCV

601

0 2 0

ACHE

- CHCX91+S NONE
- PCV without offset
- GPS L1 PCV -4 ... +2 mm
- stdev (type mean)
 0.1 ... 0.4 mm

Absolute GPS L2 PCV and Standard Deviation

0.0040

0.0030

0.0020

0.0010

0.0000

-0.0010

-0.0020

-0.0030

-0.0040

٤

PCV

602

GPS

rover antenna

ACHE

- CHCX91+S NONE
- PCV without offset
- GPS L2 PCV -4 ... +2 mm
- stdev (type mean) 0.1 ... 0.4 mm

Absolute GPS LO PCV

• rover antenna

ACHE

- CHCX91+S NONE
- PCV without offset
- GPS LO PCV
 - -10 ... +4 mm

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations

GNSS Antenna Group Delay Variation

Near- and Far-Field Impact

Excursion - GNSS Satellite Antenna

Excursion - Historical Review

Summary/Outlook

TREASURE TRANSCREASE TRANSCREA

GNSS Antenna Calibration - Geo++ GNPCVDB Database

- absolute PCV type means
- type means computed from several individually robot-based calibrated antennas
- rigorous adjustment using the complete variance-covariance matrix of individual calibrations
- November 2018
 - different antenna types
 - 2705 / **7718** individual GPS antennas / calibrations
 - 1316 / **3679** individual GPS+GLO antennas/ calibrations
- free access to information on PCV pattern (graphics, ARP- und NRP definition, etc.)
- certain type means are provided to IGS/EPN (see eg IGS igs14.atx)
- license for actual access to absolute PCV (numerical values of PCV)
- http://gnpcvdb.geopp.de/

Offset Analysis DM-type Choke Ring Antennas

horizontal offsets

- 5 different brands
- 8 DM-type antennas ${\color{black}\bullet}$
- with or without radome not \bullet distinguished
- remark: offsets not suited to describe PCV, however, offsets are also azimuthal PCV
- obviously \bullet
 - outliers
 - significant changes in model series

Offset Analysis DM-type Choke Ring Antennas

height offset

- dimension of antenna basically identical
- height offset from calibration much weaker than horizontal offsets
- standard deviation over all antennas about 2 mm
- different height level for different model type

Insight from Series of GNSS Antenna Calibrations

- experiences from numerous antenna calibration
- one can observe
 - individual characteristics of antenna
 - outliers compared to type mean
 - changes in model series
 - modification of antenna model
 - assembling errors
- recommendation for precise application
 - individual calibration of antenna

You want to see your PCV pattern?

- ANTEX file with one single antenna can be visualized ullet
- Geo++ GNPCV2PDF accessible at
- http://wox.geopp.de/gnpcv2pdf/index.html

(i) wox.geopp.de/gnpcv2pdf/index.html

© 2018 Geo++[®] GmbH

TREASURE Autumn School, 19-22 November, Bath, UK

FREASURE

C Q Suchen

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations

GNSS Antenna Group Delay Variation

Near- and Far-Field Impact

Excursion - GNSS Satellite Antenna

Excursion - Historical Review

Summary/Outlook

GNSS Antenna Group Delay Variations

- DM-type geodetic chokering antennas
 - TRM159800.00 SCIS
 - TRM159800.00 NONE
 - TRM59800.00 NONE
 - JAVRINGANT_DM SCIS _
- geodetic chokering antennas
 - HXCCGX601A HXCS
 - HXCCG7601A HXCG
- geodetic antenna •
 - TRM41249.00 SCIT
- rover antenna •
 - SOKGCX3 NONE
 - IGAIG8 NONE _

DM Dorne Margolin element

geodetic antenna with SCIT

geodetic chokering antennas DM-type

geodetic chokering antennas

rover antennas

GNSS Antenna Group Delay Variations

- examples of some GDV pattern
 - geodetic choke ring antennas with and without radome
 - geodetic antenna with radome
 - rover antennas
- significant effects for code sensitive applications (eg PPP utilizing Melbourne-Wübbena linear combination)

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations

GNSS Antenna Group Delay Variation

Near- and Far-Field Impact

Excursion - GNSS Satellite Antenna Excursion - Historical Review Summary/Outlook

Station Dependent Errors

- benefits separating of individual error components
- PCV and multipath effects are most important station dependent errors

dS = PCV + MP

- PCV => absolute GNSS antenna calibration multipath => difficult to calibrate, therefore model highly variable total MP in an operational procedure
- strategy to separate near-field (NF) and far-field (FF) multipath

 $dS = PCV + MP_{NF} + MP_{FF}$

Near-Field Multipath: Causes

- antenna near-field depends on
- antenna type (plus radome construction, ...)
 - mount/setup (tripod, tribrach, adaption, ...)
 - station environment (pillar, roof, ...)
 - weather conditions (reflecting coefficient, snow, ...)
- effect on signals due to
 - reflection
 - diffraction
 - imaging / electro-magnetic inter-action

Near-Field Multipath: Theoretical Impact

- horizontal reflector close to antenna (pillar setup)
 - low multipath frequency
 - impact also in high elevation
 - no averaging over time, bias
 - systematic positioning error
- typical setup of antenna (tripod setup)
 - high multipath frequency
 - impact over complete elevation range, systematic effect
 - averaging over time

Station Dependent Errors: Different Treatments

	Error	Characteristic	Treatment
Antenna	PCV	elevation and azimuth dependent PCV and GDV	calibration of PCV and GDV using robot
Multipath	MP _{near-field}	long-periodic, systematic effect, bias	calibration of near-field effects using robot/ in-situ station calibration - or avoid
	MP _{far-field}	short-periodic, systematic effect	averaging over time, absolute station calibration or weighting (CNO), sidereal differences (GPS only) - or avoid

Near-Field Multipath: Robot Calibration

- determination of near-field effect with precise robot calibration
 - standard deviation 0.2 to 0.4 mm
 - repeatability 1 mm, except close to horizon
- representative near-field environment required
- **constant geometric relation** antenna/near-field despite movements of antenna
- calibration provides
 PCV + MP_{NE}
- separation obtained through difference of calibration with/without near-field environment and antenna

Near-Field Multipath Results

- mm ... cm PCV changes
- but, amplification and
- dependency on
 - linear combination (LO)
 - tropospheric modeling
 - satellite constellation
 - elevation mask
 - ...
- effect in position domain
- height much higher affected

- TPSPG_A1 GNSS rover antenna
- 10 cm prism spacer and special construction with two ground planes ca. Ø 14cm
- target device for classical surveying
- L1 PCV difference against regular calibration
 - 10-30° elevation
 - mean ca. 3 mm maximum 6 mm
 - 40-70° elevation
 - mean ca. 1 mm maximum 2 mm

TREASURE Autumn School, 19-22 November, Bath, UK

- TPSPG_A1 GNSS rover antenna
- 10 cm prism spacer and special construction with two ground planes ca. Ø 14cm
- target device for classical surveying
- L2 PCV difference against regular calibration
 - 10-30° elevation
 - mean ca. 4 mm maximum 8 mm
 - 40-70° elevation
 - mean ca. 1 mm maximum 4 mm

- amplification for LO PCV
- LO PCV differences again:
 - 10-30° elevation
 - maximum -18 mm
 - 40-70° elevation
 - maximum +5mm
- repeatability of five antenna constructions ca. 4 mm
- also individual PCV and near-field components of antennas present

- Kadaster, The Netherlands, 2006
- NETPOS **RTK Network** (31 stations)
- 81 control points of Dutch network
- 10 RTK measurements with 10 initializations each time
- without near-field correction
 - time and spatial dependent height errors
 - mean of systematic height error is 31 mm (81points)
- with near-field correction
 - free of systematic height errors
 - mean height difference is
 -2 mm (49 points)

GNSS Antenna Correction - Impact

- **not rigorously corrected** GNSS **PCV** of reference station antenna may **cause positioning errors** for the user
- in general impact is transferable to any deficiency in GNSS antenna correction
- mm in PCV domain may cause cm in position domain errors
- cause are time- and location-dependent amplifications through
 - linear combination (LO)
 - inter-action troposphere modeling
 - satellite constellation
 - elevation mask
- height component mainly affected
- but also **potential effect** on **user** positioning algorithms

Practical Work - Setting-Up a RTK Network: GNSS Antenna/Near- and Far-Field Impact

GNSS Antenna Correction (1)

Some Details on absolute PCV Field Calibration

GNSS Antenna Correction (2)

Insight from Series of GNSS Antenna Calibrations

GNSS Antenna Group Delay Variation

Near- and Far-Field Impact

Excursion - GNSS Satellite Antenna

Excursion - Historical Review

Summary/Outlook

Excursion - GNSS Satellite Antenna

- GPS Block II/IIA Satellite Antenna \bullet
- 2008 cooperative project of NGS, Boeing and Geo++
- GPS Block II/IIA antenna with 14.4 kg, \emptyset 1.34 m \bullet
- small area of interest (**15° cone**), but data >30° used
- improved coverage due to robot
- estimation of L1 and L2 PCV
- elevation and azimuth dependency
- not affected by GNSS errors (eg ionosphere, troposphere, etc) due to short baseline
- currently offsets and pure elevation dependent PCV derived from global networks

GPS Block II/IIA Satellite Antenna

- mm magnitude of pure elevation dependent PCV
- azimuthal PCV at 15° zenith distance range from
 -8 ... +6 mm for L1 PCV
 - -4 ... +2 mm for L2 PCV

elevation and azimuth dependent PCV

Calibration of GNSS Satellite Antenna

- demand for consistency of absolute receiver PCV and satellite PCV
- provides consistency for
 - station coordinates/terrestrial scale
 - orbit parameters
 - troposphere
 - •
- general GNSS performance improvement for certain applications

Practical Work - Setting-Up a RTK Network: **GNSS** Antenna/Near- and Far-Field Impact GNSS Antenna Correction (1) Some Details on absolute PCV Field Calibration GNSS Antenna Correction (2) Insight from Series of GNSS Antenna Calibrations GNSS Antenna Group Delay Variation Near- and Far-Field Impact Excursion - GNSS Satellite Antenna **Excursion - Historical Review** Summary/Outlook

© 2018 Geo++® GmbH

driven by Geo++ mainly due to need for RTK network

- siderial day differences (1992), first PCV calibrations (1992-1993)
- close cooperation with IfE (since 1995)
- spherical harmonics PCV model, post-processing with GEONAP (1995)
- development of antenna mounts (1996-2000)
- absolute calibrations and detailed analysis (1995-1999)
- automated absolute PCV field calibration in real-time using robot (2000)
- operational absolute PCV field calibration (since 2000)

TREASURE Autumn School, 19-22 November, Bath, UK

- publication of absolute PCV for AOAD/M_T (2000)
- proposal of GPP_NULLANTENNA (2000)
- absolute PCV supplied for analysis/verification/use (2000-2001)
- Geo++ GNPCVDB antenna database (2001)
- estimation of Carrier-to-Noise Pattern S1, S2 (2000)
- GLONASS constellation sufficient for GLO PCV (2006)
- IGS switch from relative to absolute PCV (igs05.atx) with introduction of ITRF2005 (2006)
- calibration of GPS BLOCKII/IIA satellite antenna (2007)

- development of robot self-calibration (2007)
- calibration of Group Delay Variations (GDV)/Code Variation (2008)
- updated set of antenna calibrations IGS igs08.atx (2011) adopted with new reference frame ITRF2008
- updated set of antenna calibrations IGS igs14.atx (2017) adopted with new reference frame ITRF2014

Practical Work - Setting-Up a RTK Network: **GNSS** Antenna/Near- and Far-Field Impact GNSS Antenna Correction (1) Some Details on absolute PCV Field Calibration GNSS Antenna Correction (2) Insight from Series of GNSS Antenna Calibrations GNSS Antenna Group Delay Variation Near- and Far-Field Impact Excursion - GNSS Satellite Antenna Excursion - Historical Review

Summary/Outlook

Summary/Outlook

- importance of
 - verification of GNSS station setup
 - GNSS antenna correction

has been worked out

- insight from series of GNSS antenna calibrations recommends
 - individual antenna calibration for precise application
- impact of near-field multipath can have significant impact on positioning
- proper antenna/setup has benefits in GNSS positioning accuracy for GNSS service provider and user

General Classification of GNSS Terminals

	Geodetic	Rover	Handheld
frequency bands	Multiple	single/multiple	single, L1
radiation patters	tightly optimized	controlled	uncontrolled
phase behavior	characterized and compensated in 3D	moderate, not compensated	not relied upon
multipath suppression	excellent	good	none
dimensions	large	medium	small/very small
weight	heavy	portable	almost none
cost	high	medium	very low

(from Chen, X. et al. (2012). Antennas for Global Navigation Satellite Systems. John Wiley & Sons.)

Summary/Outlook

- status GNSS antenna correction is the urgent **need for**
 - antenna PCV corrections of **new frequencies** and GNSS (eg GPS L5, Galileo E6, GLONASS L3, ...)
 - azimuth dependent satellite antenna corrections
 - group delay variations (GDV)
- requirements to resolve issues
 - consistency
 - with existing PCV pattern
 - of PCV and GDV pattern
 - of satellite and receiver antenna pattern
 - update of ANTEX exchange format

Recommendation for ... Practical Work

Thank you

for mounting your antennas away from reflecting surfaces!

from: Ray, J. (2008). Systematic Errors in GPS Position Estimates. IGS Workshop, May 11, Darmstadt, Germany.

• backup

Susceptibility of Antennas to Rain

- Dorne Margolin type GNSS chokering antenna
- what about rainfall and use of a radome?
- NONE
 - drop forming
 - solid water at bottom of chokerings
- SNOW radome
 - dry reception element and chokering
 - from direct rain
 - drop forming
 - water layer (or moisture) on radome

ASHTECH

07/10/24 20:03

Controlled Rainfall during Absolute Antenna Calibration

- antenna calibration
 - under **dry weather** conditions
 - wet weather conditions using lawn sprinkler
- approximate rainfall intensity
 10 ... 20 mm/h during calibration
- rainfall intensity Germany
 moderate rainfall 5 mm/h
 heavy rain 30 mm/h
 violent storm > 50 mm/h

Sprinkling of ASH700936D_M NONE during antenna calibration

November, Bath, UK

Susceptibility of Antennas to Rain

- PCV changes due to rainfall for ASH700936D_M
- NONE GPS L0 < 3 mm
- SNOW GPS L0 > 10 mm
- significant compared to repeatability of individual antenna
- chokering antenna with radome more affected

Findings from Controlled Rainfall

- PCV changes due to rainfall
- systematic effects in precise height determination
- coordinates changes under ulletchanging weather conditions
- reception characteristics will be superimposed by multipath
- needs further analysis with ulletdifferent antenna types and different radomes

07/10/24 20:02

07/10/25 20:36

TREASURE Autumn School, 19-22 November, Bath, UK

