

Neue Aspekte bei der Stationskalibrierung: Trennung Nahfeld und Fernfeld Multipath

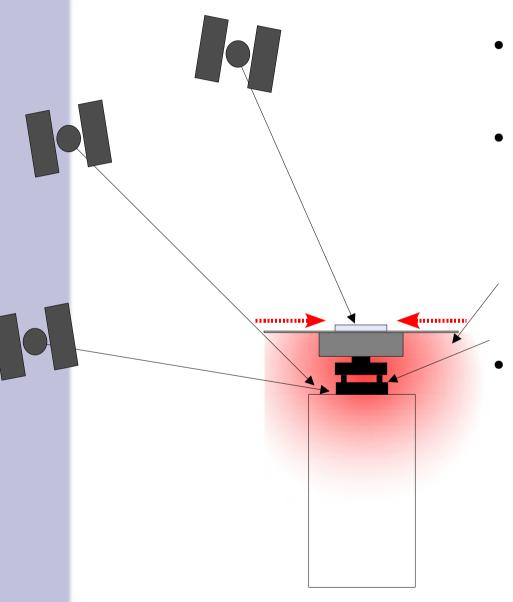
Gerhard Wübbena, Martin Schmitz, Gerald Boettcher

Geo++® GmbH 30827 Garbsen Germany www.geopp.com

Überblick

- Motivation
- Wirkungsweise und Auswirkung Nahfeld-Multipath
- Kalibrierung von Nahfeld-Multipath
- Anwendungsbeispiel RTK Vernetzung
- Trennung Nahfeld- und Fernfeld-Multipath
- Bestimmung von Nahfeld-Multipath einer Referenzstation
- In-situ Kalibrierung bewegter Plattformen
- Zusammenfassung/Ausblick

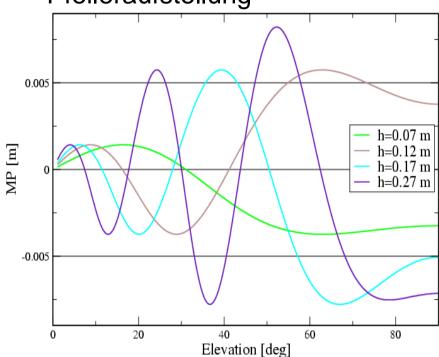
Motivation



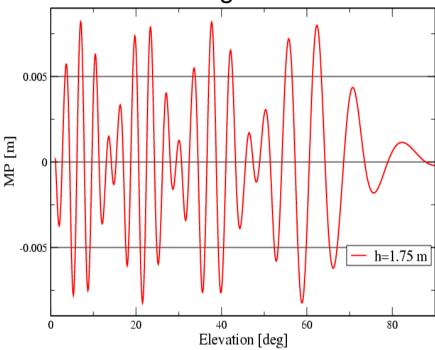
- Nahfeld-Problematik vorgestellt AWS03, Frankfurt
- vielfältige Erfahrungen zur Nahfeld-Problematik
 - Antennenkalibrierung mit Roboter
 - RTK Vernetzungen
 - Koordinatenänderungen nach Antennenwechsel
 - Lagebestimmung mit GNSS
- Nahfeld-Problematik zunehmend von Bedeutung und Interesse
 - Analysen notwendig
 - Entwicklung von Verfahren zur Bestimmung
- Ziel ist Verbesserung von Genauigkeit und Zuverlässigkeit von GNSS Anwendungen
 - permanente Referenzstationen
 - Höhenbestimmung mit GNSS Verfahren

_ ...

Wirkungsweise des Nahfeld-Multipath


- Antennennahfeld
 - Pfeiler, Stativ, Dreifuß, Adaption, etc.
- Wirkung auf Signal
 - Diffraktion/Beugung
 - Reflexion
 - Imaging?
 - elektro-magnetische Koppelung?
 - Multipath im Nahfeld
 - konstante Geometrie Antenne/Nahfeld
 - systematischer Effekt
 - keine Mittelung über Zeit

Theoretischer Multipath-Einfluss


Modellannahme: horizontaler Reflektor

Pfeileraufstellung

- niedrige Frequenzen
- Effekt in hohen Elevationen
- Einfluss systematisch und elevationsabhängig

Stativaufstellung

- hohe Frequenzen
- "vergleichbar" über Elevationen
- Einfluss "geringer"

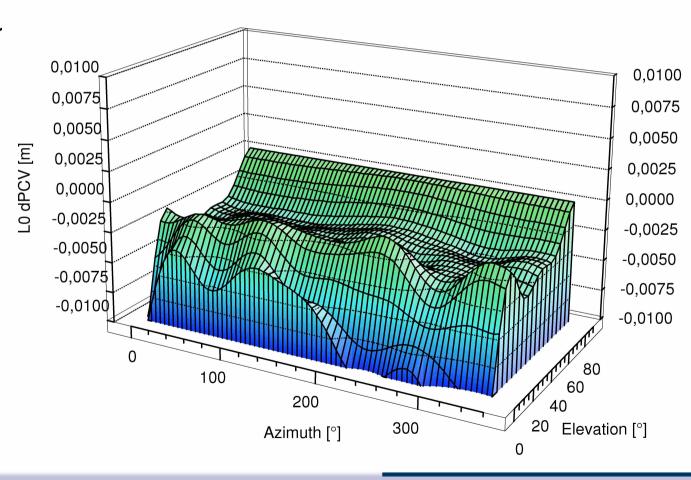
Auswirkungen Nahfeld-Multipath

- Eigenschaften MPNahfeld
 - Mittel der Nahfeld-Effekte ist nicht Null
 - keine Reduktion durch lange Beobachtungszeiten
 - systematischer Fehler der Koordinaten, vorwiegend der Höhenkomponente
 - Verstärkung/Abhängigkeit der Nahfeld-Effekte im Koordinatenraum durch
 - Linearkombination (ionosphärische freie Linearkombination)
 - Troposphärenmodellierung
 - Satellitenkonstellation
 - Elevationsmaske
 - Effekte im Koordinatenraum zeitabhängig (Satellitenkonstellation)

Kalibrierung von Nahfeld-Multipath

- präzise Roboterkalibrierung
 - Standardabweichung 0.2 bis 0.4 mm
 - Wiederholbarkeit 1 mm, außer Horizontnähe
- repräsentative Nahfeldumgebung (Rekonstruktion)
- konstante geometrische Beziehung trotz Bewegung der Antenne
- Kalibrierung liefert PCV + MPNahfeld
- trennbar durch Differenz Antenne mit Nahfeldumgebung und regulärer Kalibrierung oder PCV Korrektur während Kalibrierung

Nahfeld-Einfluss auf DM-Typ Chokering Antenne



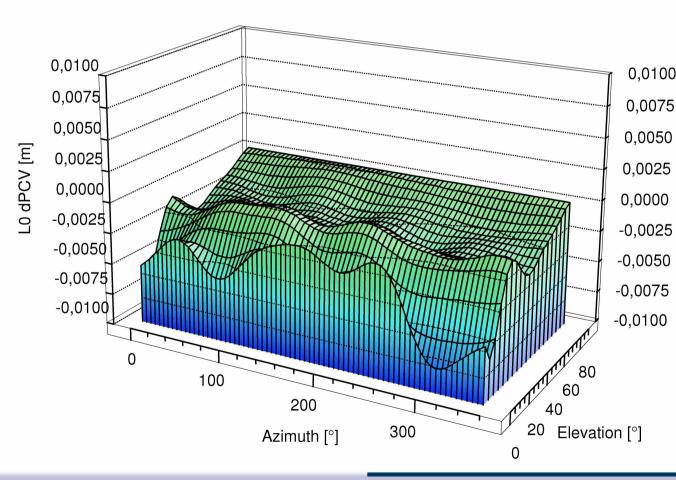
- ASH700936D M
- Pfeilerkopf/Dreifuß
- Ø 19cm/∆ Zeiss
- Differenz L0 PCV zur regulären Kalibrierun
 - 10-30° Elevation

Mittel ca. 2 mm Maximum 7 mm

- 40-70° Elevation

Mittel ca. 2 mm Maximum 3 mm

Nahfeld-Einfluss auf DM-Typ Chokering Antenne

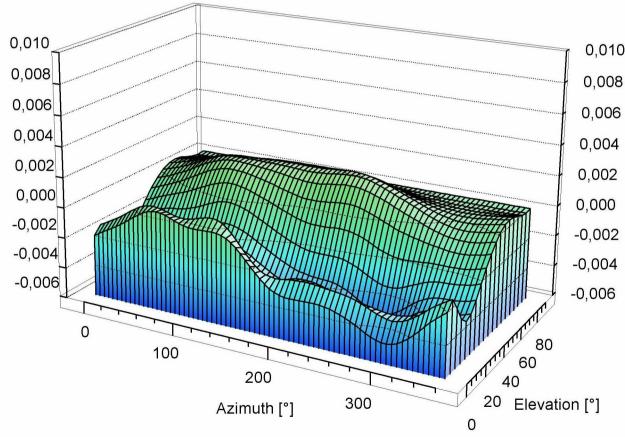


- ASH700936D_M
- Pfeilerkopf/Dreifuß
- 30x30 cm/∆ Zeiss
- Differenz L0 PCV zur regulären Kalibrierung
 - 10-30° Elevation

Mittel ca. 2 mm Maximum 6 mm

- 40-70° Elevation

Mittel ca. 4 mm Maximum 5 mm



- TPSPG_A1 GNSS Antenne
- 10 cm Prism Spacer sowie spezielle Konstruktion mit zwei Grundplatten ca. Ø 14 cm
- Zielvorrichtung für klassische Vermessung
- L1 PCV Differenzen zur Entre leinen zur Entr
 - 10-30° Elevation

Mittel ca. 3 mm Maximum 6 mm

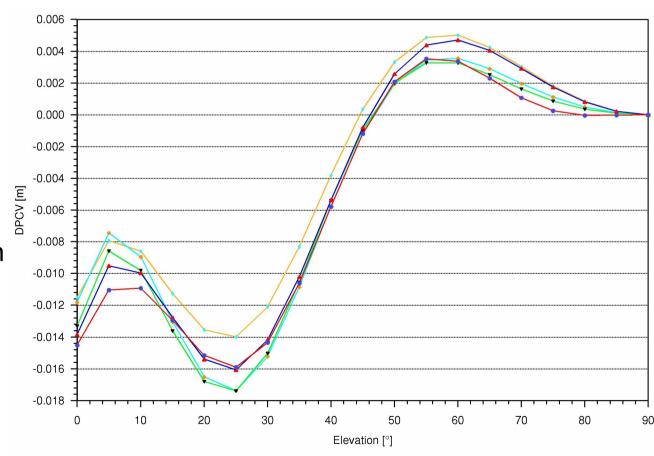
- 40-70° Elevation

Mittel ca. 1 mm Maximum 2 mm

- TPSPG_A1 GNSS Antenne
- 10 cm Prism Spacer sowie spezielle Konstruktion mit zwei Grundplatten ca. Ø 14 cm
- Zielvorrichtung für klassische Vermessung
- - 10-30° Elevation

Mittel ca. 4 mm Maximum 8 mm

- 40-70° Elevation


Mittel ca. 1 mm Maximum 4 mm

- Verstärkung in L0 PCV Differenzen
- L0 PCV Differenzen zur regulären Kalibrierung
 - 10-30° Elevation
 Maximum -18 mm
 - 40-70° Elevation
 Maximum +5mm
- Wiederholbarkeit fünf Antennenkonstruktionen ca. 4 mm
- auch individuelle
 Anteile der Antennen enthalten

- Kadaster Niederlande
- NETPOS RTK Vernetzung (31 Stationen)
- 81 Kontrollpunkte des Niederländischen Netzes
- 10 RTK Messungen mit jeweils
 10 Initialisierungen
- ohne Nahfeld-Korrektur
 - zeitlich und räumliche Höhenfehler
 - systematischer Höhenfehler im Mittel 31 mm (81 Punkte)
- mit Nahfeld-Korrektur
 - frei von systematischen Fehler im Mittel -2 mm (49 Punkte)

Stationsabhängiger Fehler

- Philosophie: Trennung der einzelnen Fehlerkomponenten
- PCV und Multipath maßgebliche, stationsabhängige Fehler
 dS = PCV + MP
 - PCV => absolute GNSS Antennenkalibrierung
 - Multipath =>
- Strategie: Trennung Nahfeld- und Fernfeld-Multipath
 dS = PCV + MPNahfeld + MPFernfeld
- Vorteile:
 - MPNahfeld absolut bestimmbar
 - unterschiedliche Behandlung der MP-Anteile
 - unterschiedlich beeinflusst durch Umgebungsbedingungen

Behandlung Stationsabhängiger Fehler

	Fehler	Charakteristik	Behandlung
Antenne	PCV	elevations- und azimutabhängige PCV	Kalibrierung der PCV mit Roboter
Multipath	MPNahfeld	lang-periodisch, systematischer Effekt, Bias	Kalibrierung des Nahfeld- Effekts mittels Roboter und Rekonstruktion des Antennen-Setup
	MPFernfeld	kurz-periodisch, systematischer Effekt	Mittelung über Zeit, absolute Stationskalibrierung oder Gewichtung (CN0)
Stations unsicherheit		stabiler Untergrund, Aufstellung, Monumen- tierung	Analyse von Zeitreihen

Bestimmung von MPNahfeld einer Referenzstation

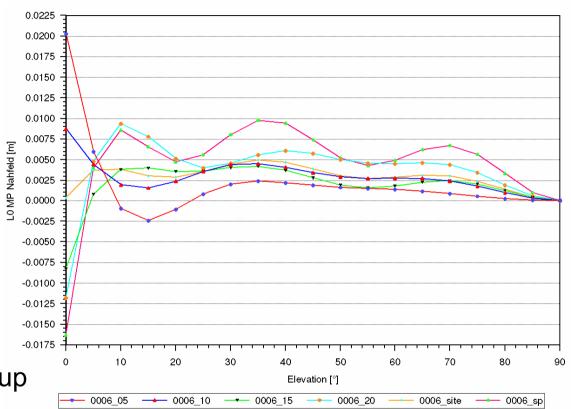
Grundprinzip:


- Verrauschen von Multipath durch räumliche Variationen
- hohe Anzahl der Variationen
- Variation über Zeit (z.B. Stationskalibrierung mit Roboter)
- Variation im Raum (z.B. Langzeitbeobachtungen mit unterschiedlichen Antennen-Setups, Stationen, etc.)
- Ziel: absolute MPNahfeld Bestimmung einer Referenzstation

Ansatz	Verfahren
explizite Bestimmung	Roboterkalibrierung
Multipath-Verrauschen	Stationskalibrierung Roboter
	Mehrstationsaufbau
Kombination der Ansätze	kalibrierte Ausrüstungen

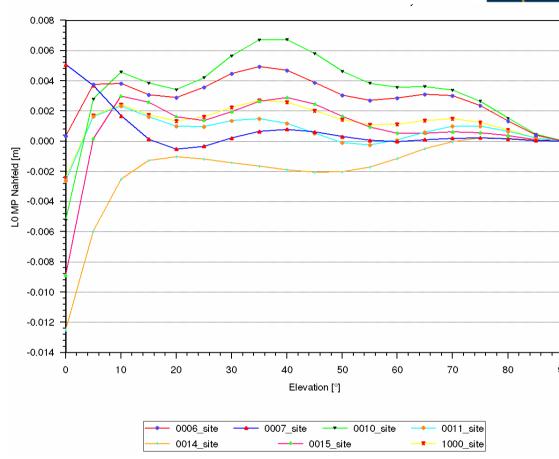
Untersuchungen zum Mehrstationsaufbau

Q.


- umfangreiche Messungen
- Analysen von sechs Pfeilern
- jeweils mindestens 24 h Daten
- Variationen des Antennen-Setups
 - zyklische Vertauschung Adaption:
 ca. 5, 10, 15, 20 cm Höhe, Stativ über Pfeiler
- Unterschiede hinsichtlich
 - Dreifüße, Chokering Antennen und Empfänger
- unterschiedliche Abschattung
- unterschiedliche Wetterbedingungen über einem Monat Messzeitraum
- unveränderter Aufbau Referenzstation 1000
- Ziel: Analyse und ggf. Bestimmung MPNahfeld

Mehrstationsaufbau: Variation Antennen-Setup

- PCV in Auswertung korrigiert
- Schätzung MPNahfeld über Kugelfunktionsentwicklung
 - für jedes Antennen-Setup
 - für Station
- "relativer" MPNahfeld
- Diskussion
 - bekannte MPNahfeld
 Variation mit Antennen-Setup
 - unterschiedliche Frequenz
 - Bandbreite 10 mm
 - am Horizont größer


05: Höhe ca. 5cm
10: Höhe ca. 10 cm
15: Höhe ca. 15 cm
20: Höhe ca. 20 cm
sp: Stativ über Pfeiler

site: Ergebnis für Station

Mehrstationsaufbau: Variation Stationen

- Zusammenfassung aller MPNahfeld Daten durch gewichte Auswertung
- Ergebnis MPNahfeld Referenzstation 1000 ?
- Diskussion
 - zeigt unterschiedliche Nahfeld-Effekte der Aufstellungen
 - kein absoluter Bezug ohne absolute MPNahfeld Referenz
 - Ansatz erlaubt keine kontrollierte MPNahfeld Bestimmung

*_site: Ergebnis für Station

Eine fast philosophische Frage ...

 systematische Fehler durch MPNahfeld vorhanden

Sind GNSS Höhen ohne systematische Fehler bestimmbar?

- nein, ohne Berücksichtigung MPNahfeld
- ja, unter Berücksichtigung MPNahfeld
 - mit absoluter MPNahfeld Korrektur sind Höhen frei von systematischen Fehlern
- Empfehlung
 - Analyse und Bewertung weiterer Ansätze zur Bestimmung von MPNahfeld
 - Vermeidung von MPNahfeld
 (z.B. standardisierter, kalibrierter Antennenaufbau, ...)

In-situ Kalibrierung bewegter Plattformen

 Antennenmontage verursacht starke und komplexe Nahfeld-Effekte

 Genauigkeitsverlust der Anwendung

- Kalibrierung notwendig

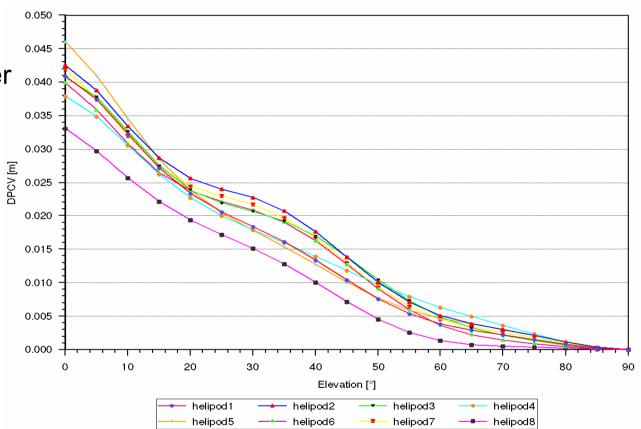
 Rekonstruktion Umgebung für Kalibrierung schwierig (Roboter beschränkt durch Gewicht und Abmaße

Prüfling)

In-situ Kalibrierung bewegter Plattformen

Beispiel

- Helipod ILR Braunschweig
- acht TRM41555.00 "Bullet"
- räumliche Änderung: durch Bewegung in unterschiedlichen Kippungen und Neigungen (Abdeckung)
- mehrere Stunden Beobachtungen
- Bestimmung des gemeinsamen PCV und MPNahfeld im Post-Prozessing
- Besonderheit: Applikation benötigt nur relative MPNahfeld Korrekturen



In-situ Kalibrierung bewegter Plattformen

- TRM41555.00 "Bullet"
- rein elevationsabhängiger Vergleich mit regulärer Kalibrierung
- PCV + MPNahfeld Korrektur
- systematischer Effekt von ca. 40 mm aufgrund MPNahfeld
- Differenzen zwischen Antennen aufgrund individueller PCV und MPNahfeld Einflüsse

Zusammenfassung/Ausblick

- MPNahfeld zunehmend von Bedeutung
- Trennung von Multipath in MPNahfeld und MPFernfeld
 - Korrektur MPNahfeld möglich
 - unterschiedliche Behandlung der Multipath-Anteile
- Analyse und Bewertung weiterer Ansätze zur Bestimmung von MPNahfeld notwendig
- In-situ Kalibrierung von bewegten Plattformen
 - MPNahfeld bei GPS Lagebestimmung
 - Bestimmung aus Bewegungen der Plattformen