

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern

Gerhard Wübbena, Martin Schmitz, Gerald Boettcher

Geo++® GmbH 30827 Garbsen Germany www.geopp.com

Content

Ò.

- introduction
- repeatability of absolute phase variations (PCV)
- calibration of GLONASS PCV
- determination of carrier-to-noise (CN0)
- summary and conclusion

Introduction

- robot calibration
 - GPS phase center and variations (PCV)
- excellent tool to determine additional parameters
 - GLONASS PCV
 - carrier-to-noise (CN0) pattern
 - near-field effects of antenna
 - separation of multipath in near-field and far-field effects
 - absolute multipath with absolute station calibration
- robot calibration determines
 - GPS + GLO L1 and L2 PCV
 - GPS + GLO S1 and S2 PCV

date of PCV calibration robot

- Geo++ 2005-08-08
- Berlin 2006-02-15 2006-01-14
- ife

Repeatability of Phase Variations

Different Robots

- repeatability of absolute PCV antenna calibration with robot
- three GNPCV robots

robot operated Geo++ in Garbsen ife in Hannover Berlin tested in Garbsen

individual ASH700936D_M • antenna calibrated at dates

Institut für Erdmessung, Universität Hannover

Repeatability of Phase Variations

L1 dPCV

- individual ASH700936D_M antenna
- three different robots
- magnitude PCV differences

L1 < 0.5 mm

Elevation Dependent Difference from Type Mean

ASH700936D_M#CR14348, L1 PCV

Repeatability of Phase Variations

L2 dPCV

- individual ASH700936D_M antenna
- three different robots
- magnitude PCV differences
 - L2 < 1 mm

Elevation Dependent Difference from Type Mean

ASH700936D_M#CR14348, L2 PCV

Repeatability of Phase Variations

L0 dPCV

- individual ASH700936D_M antenna
- three different robots
- ionospheric free signal
- magnitude PCV differences
 - L0 < 1 mm above 10 deg

Elevation Dependent Difference from Type Mean

ASH700936D_M#CR14348, L0 PCV

Repeatability Individual Antenna

Repeatability after 2 Years

- geodetic antenna ASH700936D_M SNOW
- differences L0 PCV: average 1-2 mm
- maximum at horizon about 4 mm

Repeatability of Azimuthal PCV

Significance of Azimuthal PCV

- repeatability and standard deviation of azimuthal PCV from robot calibration document stability
- example TPSCR3_GGD CONE
 - choke ring antenna
 - similar PCV pattern as DM-type choke ring antennas
 - type mean consists 132 antennas and 318 calibrations
 - randomly selected individual antenna shows high correlation of 2 mm azimuthal variation
 - remark: also individual differences present

TPSCR3_GGD CONE Antenna Type PCV L0: 132 Ant, 318 Cal

TPSCR3_GGD CONE Individual PCV L0: 1 Ant, 2 Cal

Geo++ GNPCVDB Database

Absolute PCV Type Mean

- type means computed from calibrated antennas performed with robot
- rigorous adjustment using complete variance-covariance matrix of individual calibrations

• April 2006

- about 125 different antenna types 957 individual calibrated antennas 3748 individual calibrations
- public information on PCV pattern (graphics, ARP and North definition, etc)
- selected antennas provided to IGS
- license for use of absolute PCV (actual access to numeric PCV)
- http://gnpcvdb.geopp.de/

Horizontal Offsets

- 5 different brands
- 8 DM-type antennas
- with or without radome not distinguished
- offsets not suited to describe PCV
- however, offsets are also azimuthal PCV
- outliers
- significant changes in model series

Height Offset

- dimension of antenna basically identical
- height offset much weaker than horizontal offsets
- standard deviation over all antennas about 2 mm
- different level for different model types

Current Status

- differences to GPS
 - different frequencies
 - mixture of frequencies used in field calibration
 - for a long time no sufficient constellation
- GPS PCV used for GLO PCV
- GPS PCV representative? / GLONASS calibration necessary?
- frequency dependent calibration possible for GLONASS? / necessary for GLONASS?

20 Elevation [°]

Absolute PCV Robot Calibration

- estimates GLO L1 and L2
 - mixture of observed GLONASS frequencies (constellation)
- frequency dependent GLONASS PCV
 - assumes linearity of PCV changes for GPS/GLO, GLO/GLO frequencies (compliant with Schupler, Clark, GPS World, 200⁻),
 - reference signal GPS L1 and L2
 - estimates Delta PCV per 25.0 MHz
 - easy to handle scaling based on approximate mean difference between GPS and GLO frequencies

(mean both freq. (k = -7 ... 6) $\sim 22 \text{ MHz}$ mean both freq. (k = -7 ... 12) $\sim 24 \text{ MHZ}$)

ASH700936D M SNOW GLO L0 PCV: Mixed GLO Calibration 0,015 0.015 0.010 0.010 0,005 0.005 Ro PCV [m] 0.000 0,000 -0,005 -0.005 -0.010 -0.010 -0.015 -0.015 -0.020 -0.020 100

200

Azimuth [°]

ASH700936D M SNOW

300

PCV Difference between GPS and GLONASS

- current situation GPS PCV == GLO PCV
- k=4 mean frequency channel for current GLONASS constellation
- ASH700936D_M antenna
- simultaneous calibration
- mean difference GPS and GLO L0 PCV
- magnitude PCV differences

L0 mean 2 mm 2 mm 2 mm

Difference between GLONASS frequencies

- GLONASS frequencies beyond 2005 frequency channels k = -7 ... +6
 - largest frequency difference k=-7 and k=6
- ASH700936D_M antenna
- magnitude PCV differences

L0 mean	> 1 mm
maximum	1.5 mm

ASH700936D_M SNOW Difference_GLO_(k=-7)/GLO_(k=6)

O dPCV [m]

Difference between mixed and frequency dependent calibration

- constellation dependent mix of GLONASS frequencies
- k=4 mean frequency channel for current GLONASS constellation
- ASH700936D_M antenna
- simultaneous calibration
- magnitude PCV differences

L0 mean	<1 mm
maximum	2 mm

ASH700936D_M SNOW Difference GLO (mix)/GLO (k=4) 0.0020 0.0020 0,0015 0,0015 0.0010 0.0010 0,0005 0.0005 0.0000 0,0000 -0,0005 -0.0005 -0.0010 -0,0010 -0.0015 -0.0015 -0,0020 -0,0020 80 100 60 200 40

300

Azimuth [°]

20

Elevation [°]

TPSCR3_GGD CONE

- similar PCV pattern as ASH700936D_M choke ring antenna
- different constellation during calibration
- high correlation in L0 PCV difference GPS/GLO (k=4)
- supports independently significance and magnitude of PCV differences between GPS and GLO
 ASH700936D_M L0 dPCV GPS/GLO (k=4)

CN0 Robot Calibration

- modeling with spherical harmonics (degree and order as for PCV)
- CN0 for zenith set to zero, hence result is CN0 decrease
- absolute information also stored and accessible
- example

individual ASH700	936D_M SNOW
receiver type	L1 CN0 decrease
JPS Legacy	14 dBHz
ASHTECH Z-XII3	80 units

How to Use CN0 Decrease Function?

- effective use of CN0 observable requires standardization
 - determination of equipment dependent effects
 - antenna "gain pattern"
 - cable attenuation
 - receiver dependencies (hardware and firmware version, parameter settings)
 - mapping function to convert to dBHz CN0 observable
 - mapping function to get comparable CN0 observable between receivers
 - mapping-function for atmospheric effects (inclusive space loss)
 - calibration of satellites using global observations

Applied CN0 Standardization Procedure

• several conversions and corrections applied to initial CN0 observable

Affecting CN0	Abbr.	Correction
satellite	Sat	ICD GPS "received power function"
atmosphere	Atm	ICD GPS "received power function"
antenna	Ant	robot calibration
cable/wiring	Cab	relative CN0 (CN0 decrease)
receiver	Rec	standardization (mapping function related to Ashtech Z-X)

- standardized CN0 = CN0 - ((Sat + Atm) + Cab + Ant + Rec) = MP + Diff + ε
- multipath and diffraction are maintained
- usable for CN0 based observation weighting

CN0 Differences between Receivers

- conversion signal-to-noise units to dbHz
- significant differences in shape of functions
- cable and receiver setups allow parallel shift of function

Mapping Function

- standardization using Ashtech Z-Xtreme as a reference
 - latest receiver technology during analysis (2004)
 - uses Z-tracking for L2
- 24 h data observed with identical antenna and with different receivers
- example JPS Legacy with different antennas
- polynomial of 3rd degree as a mapping function on ASHTECH Z-X
- goal in graphs is conversion to auxiliary line (gradient 1)

Standardized CN0

- IGS stations with same receiver type
- influence of antenna, satellite and atmosphere corrected
- multipath averaging through number of stations
- deviation from mean value for several receivers
- magnitude of CN0 differences between receivers

L1 CN0 +/- 0.5 dbHz (above 5 deg elevation)

 applying standardization gives improvement in absolute level

Summary and Conclusion

- robot calibration operational procedure since 2000 providing
 - GPS L1 and L2 PCV
 - GLO L1 and L2 PCV, frequency independent Delta PCV
 - GPS & GLO S1 S2 decrease functions
- GNPCVDB database in the future with GNSS PCV
- field calibration of GLONASS PCV possible
 - difference to GPS PCV
 - GLO PCV should be frequency dependent estimated and applied
- CN0 decrease functions available
 - standardization of CN0 is feasible
- IGS ANTEX (Antenna Exchange format) extension suggested

