

Separation of Near-Field and Far-Field Multipath: New Strategies for Station Calibration

Gerhard Wübbena, Martin Schmitz, Gerald Boettcher

Geo++® GmbH 30827 Garbsen Germany www.geopp.com

Overview

- Motivation
- Cause and Impact of Near-Field Multipath
- Calibration of Near-Field Multipath
- Real Life Example from RTK Networking
- Separation of Near-Field and Far-Field Multipath
- Determining Near-Field Multipath of a Reference Station
- In-situ Calibration of Kinematic Platforms
- Summary/Outlook

Motivation

- near-field issue addressed by Geo++ at Antenna Workshop 2003, Frankfurt
- numerous experiences regarding near-field issue from
 - antenna calibration with robot
 - RTK Networks
 - coordinate changes after antenna change
 - attitude determination with GNSS
- near-field issue increasingly of importance and interest, therefore
 - investigations are necessary
 - new strategies for determination are required
- goal is improvement of accuracy and reliability of GNSS applications
 - permanent reference stations
 - height determination using GNSS methods

Cause of Near-Field Multipath

Theoretical Multipath Influence

model assumption: horizontal reflector

- pillar/pier setup • h=0.07 m h=0.12 m h=0.17 m h=0.27 mh=0.2
- low frequencies
- effect in high elevations
- systematic influence and elevation dependency

• tripod setup

- high frequencies
- "comparable magnitude" over elevations
- effect expected to be "smaller"

Impact of Near-Field Multipath

- characteristics MPnear-field
 - average of near-field effects is not zero
 - <u>no</u> reduction through long observation time
 - systematic error in coordinates
 - amplification/dependency of near-field effects on
 - linear combination (ionospheric free linear combination)
 - tropospheric modeling
 - satellite constellation
 - elevation mask
 - influence on coordinate determination is time dependent (satellite constellation, etc.)

Calibration of Near-Field Multipath

- precise robot calibration
 - standard deviation 0.2 bis 0.4 mm
 - repeatability 1 mm, except close to horizon
- representative near-field environment required
- constant geometric relation antenna/near-field despite movements of antenna
- calibration provides PCV + MPnear-field
- separation obtained through difference of calibration with/without near-field environment and antenna

Near-Field-Influence on DM-Type Chokering Antenna

- ASH700936D_M
- reconstruction head of pillar/tribrach
- \emptyset 19cm/ Δ Zeiss
- difference L0 PCV against regular calibration
 - 10-30° elevation

mean ca. 2 mm maximum 7 mm

- 40-70° elevation

mean ca. 2 mm maximum 3 mm

Near-Field-Influence on DM-Type Chokering Antenna

- ASH700936D_M
- reconstruction head of pillar/tribrach
- $30x30 \text{ cm}/\Delta \text{ Zeiss}$
- difference L0 PCV against regular calibration
 - 10-30° elevation

mean ca. 2 mm maximum 6 mm

- 40-70° elevation

mean ca. 4 mm maximum 5 mm

- TPSPG_A1 GNSS antenna
- 10 cm prism spacer and special construction with two ground planes ca. Ø 14 cm
- target device for classical surveying
- L1 PCV difference against regular calibration
 - 10-30° elevation

mean ca. 3 mm maximum 6 mm

- 40-70° elevation

mean ca. 1 mm maximum 2 mm

- TPSPG_A1 GNSS antenna
- 10 cm prism spacer and special construction with two ground planes ca. Ø 14 cm
- target device for classical 0, surveying 0,
- L2 PCV difference against regular calibration
 - 10-30° elevation

mean ca. 4 mm maximum 8 mm

- 40-70° Elevation

mean ca. 1 mm maximum 4 mm

- amplification for L0 PCV
- L0 PCV differences against
 - 10-30° elevation maximum -18 mm
 - 40-70° elevation maximum +5mm
- repeatability of five antenna constructions ca. 4 mm
- also individual PCV and near-field components of antennas present

Real Life Example from RTK Networking

- Kadaster, The Netherlands
- NETPOS RTK Network (31 stations)
- 81 control points of Dutch network
- 10 RTK measurements with 10 initializations each time
- without near-field correction
 - time and spatial dependent height errors
 - mean of systematic height error is 31 mm (81points)
- with near-field correction
 - free of systematic errors mean height difference is
 -2 mm (49 points)

Station Dependent Errors

Ò

- Geo++ philosophy: separation of individual error components
- PCV and multipath are most important station dependent errors
 dS = PCV + MP
 - PCV => absolute GNSS antenna calibration
 - multipath => ?
- Strategy: separation of near-field and far-field multipath
 dS = PCV + MPnear-field + MPfar-field
- advantages:
 - MPnear-field absolute determinable
 - different treatment of MP components
 - differently affected through conditions of actual environment

	Error	Characteristic	Treatment
Antenna	PCV	elevation and azimuth dependent PCV	calibration of PCV using robot
Multipath	MPnear-field	long-periodic, systematic effect, bias	calibration of near-field effects using robot and reconstruction of antenna setup
	MPfar-field	short-periodic, systematic effect	averaging over time, absolute stations calibration or weighting (CN0)
Station Uncertainty		stable unterground, setup, monumentation	analysis of time series

- basic principle:
 - noisifying of multipath through spatial variations
 - high number of variations of importance
 - variation over time (e.g. station calibration with robot)
 - variation in space (e.g. long observations with different antenna setups, stations, etc.)
- goal: absolute MPnear-field determination of a reference station

Approach	Method	
explicit determination	robot calibration	
noisifying multipath	station calibration using robot	
	multiple station setup	
combination of approaches	calibrated equipment	

10th EUPOS[®] ICS, November 23-24, 2006, Budapest, Hungary.

Investigations of Multiple Station Setup

- extensive measurements
- analysis of six pillars
- at least 24 h data in every case
- variations of antenna setups
 - permutation of adaption:
 ca. 5, 10, 15, 20 cm height, tripod over pillar
- variations regarding
 - tribrach, chokering antenna and receiver
- varying obstructions
- varying weather conditions over one month duration of measurements
- unchanged setup of reference station 1000
- goal: analysis and if applicable determination of MPnear-field

Multiple Station Setup: Variation of Antenna Setups

____ C

- PCV corrected in processing
- estimation of MPnear-field using spherical harmonic expansion
 - for every antenna setup
 - for every station
- "relative" MPnear-field
- discussion
 - known MPnear-field
 - different frequencies
 - band width of 10 mm
 - largest at horizon

- 05: height ca. 5cm
- 10: height ca. 10 cm
- 15: height ca. 15 cm
- 20: height ca. 20 cm
- sp: tripod over pillar
- site: combination for station

Multiple Station Setup: Variation of Stations

Ò.

- combining all MPnear-field data using weighted adjustment
- is result MPnear-field of reference station 1000 ?
- discussion
 - different near-field effects of setups obvious
 - no absolute leveling without any absolute MPnear-field reference
 - strategy allows no controlled MPnear-field determination

An Almost Philosophical Question ...

obviously there are systematic errors through MPnear-field

Is it possible to determine GNSS heights without any systematic error?

- no, without considering MPnear-field
- yes, with taking MPnear-field into account
 - with absolute MP_{near-field} correction heights are free of systematic errors
- recommendation
 - analysis and assessment of additional strategies
 - avoiding MPnear-field

In-situ Calibration of Kinematic Platforms

- GPS attitude determination
 - antenna mounting causes large and complex near-field impact
 - loss of accuracy in the application
 - calibration required
 - reconstruction of environment is difficult (robot limited in weight and dimension of test antenna)

In-situ Calibration of Kinematic Platforms

example

- "Helipod" ILR Braunschweig
- eight TRM41555.00 "Bullet" L1-only antennas
- spatial variations: through movements with different tilts and inclination (executed with a car)
- several hours of observation
- determination of combined PCV and MPnear-field effect in postprocessing
- remark: attitude application requires only relative MPnear-field corrections

In-situ Calibration of Kinematic Platforms

- TRM41555.00 "Bullet"
- pure elevation dependent comparison against regular calibration
- PCV + MPnear-field
- systematic effect
- differences between antennas due to individual PCV and individual MPnear-field impact

Summary/Outlook

- MPnear-field impact is becoming of significant importance
- proposed strategy: separation of multipath into MPnear-field and MPfar-field
 - correction of MPnear-field demonstrated
 - enables different treatment of the two multipath components
- analysis and assessment of strategies to determine MPnear-field are necessary
- in-situ calibration of kinematic platforms
 - MPnear-field has impact on GPS attitude systems
 - determination of MPnear-field using the moving platform

Multipath Caused by Horizontal Reflector

- unlimited horizontal reflector
- effect is function of
 - elevation of satellite
 - path length and height
 - reflection coefficient
 - frequency

