Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern

Gerhard Wübbena, Martin Schmitz, Gerald Boettcher

Geo++® GmbH
30827 Garbsen
Germany
www.geopp.com
Content

- introduction
- repeatability of absolute phase variations (PCV)
- calibration of GLONASS PCV
- determination of carrier-to-noise (CN0)
- summary and conclusion
Introduction

- robot calibration
 - GPS phase center and variations (PCV)
- excellent tool to determine additional parameters
 - GLONASS PCV
 - carrier-to-noise (CN0) pattern
 - near-field effects of antenna
 - separation of multipath in near-field and far-field effects
 - absolute multipath with absolute station calibration
- robot calibration determines
 - GPS + GLO L1 and L2 PCV
 - GPS + GLO S1 and S2 PCV
Repeatability of Phase Variations

Different Robots

- repeatability of absolute PCV antenna calibration with robot
- three GNPCV robots
 - Geo++ operated in Garbsen
 - ife in Hannover
 - Berlin tested in Garbsen
- individual ASH700936D_M antenna calibrated at dates
 - Geo++ 2005-08-08
 - Berlin 2006-02-15
 - ife 2006-01-14
Repeatability of Phase Variations

L1 dPCV

- individual ASH700936D_M antenna
- three different robots
- magnitude PCV differences

L1 < 0.5 mm
Repeatability of Phase Variations

L2 dPCV
- individual ASH700936D_M antenna
- three different robots
- magnitude PCV differences

L2 < 1 mm

Elevation Dependent Difference from Type Mean

ASH700936D_M#CR14348, L2 PCV
Repeatability of Phase Variations

L0 dPCV

- individual ASH700936D_M antenna
- three different robots
- ionospheric free signal
- magnitude PCV differences

L0 < 1 mm above 10 deg
Repeatability Individual Antenna

Repeatability after 2 Years

- geodetic antenna ASH700936D_M SNOW
- differences L0 PCV: average 1-2 mm
- maximum at horizon about 4 mm
Repeatability of Azimuthal PCV

Significance of Azimuthal PCV

- repeatability and standard deviation of azimuthal PCV from robot calibration document stability
- example TPSCR3_GGD CONE
 - choke ring antenna
 - similar PCV pattern as DM-type choke ring antennas
 - type mean consists 132 antennas and 318 calibrations
 - randomly selected individual antenna shows high correlation of 2 mm azimuthal variation
 - remark: also individual differences present
Geo++ GNPCVDB Database

Absolute PCV Type Mean
- type means computed from calibrated antennas performed with robot
- rigorous adjustment using complete variance-covariance matrix of individual calibrations
- April 2006
 - about 125 different antenna types
 - 957 individual calibrated antennas
 - 3748 individual calibrations
- public information on PCV pattern (graphics, ARP and North definition, etc)
- selected antennas provided to IGS
- license for use of absolute PCV (actual access to numeric PCV)
- http://gnpcvdb.geopp.de/
Offset Analysis DM-type Choke Ring Antennas

Horizontal Offsets

- 5 different brands
- 8 DM-type antennas
- with or without radome not distinguished
- offsets not suited to describe PCV
- however, offsets are also azimuthal PCV
- outliers
- significant changes in model series

IGS Workshop 2006 „Perspectives and Visions for 2010 and beyond“, May 8-12, 2006, ESOC, Darmstadt, Germany
Offset Analysis DM-type Choke Ring Antennas

Height Offset

- dimension of antenna basically identical
- height offset much weaker than horizontal offsets
- standard deviation over all antennas about 2 mm
- different level for different model types
Calibration of GLONASS PCV

Current Status

- differences to GPS
 - different frequencies
 - mixture of frequencies used in field calibration
 - for a long time no sufficient constellation
- GPS PCV used for GLO PCV
- GPS PCV representative? / GLONASS calibration necessary?
- frequency dependent calibration possible for GLONASS? / necessary for GLONASS?
Calibration of GLONASS PCV

Absolute PCV Robot Calibration

- estimates GLO L1 and L2
 - mixture of observed GLONASS frequencies (constellation)
- frequency dependent GLONASS PCV
 - assumes linearity of PCV changes for GPS/GLO, GLO/GLO frequencies (compliant with Schupler, Clark, GPS World, 2001)
 - reference signal GPS L1 and L2
 - estimates Delta PCV per 25.0 MHz
 - easy to handle scaling based on approximate mean difference between GPS and GLO frequencies

(mean both freq. (k = -7 ... 6) ~ 22 MHz
mean both freq. (k = -7 ... 12) ~ 24 MHz)
Calibration of GLONASS PCV

PCV Difference between GPS and GLONASS

- current situation
 GPS PCV == GLO PCV
- k=4 mean frequency channel for current GLONASS constellation
- ASH700936D_M antenna
- simultaneous calibration
- mean difference GPS and GLO L0 PCV
- magnitude PCV differences
 L0 mean 2 mm
 maximum over 5 mm
Calibration of GLONASS PCV

Difference between GLONASS frequencies

- GLONASS frequencies beyond 2005 frequency channels
 k = -7 ... +6
 - largest frequency difference
 k=-7 and k=6
- ASH700936D_M antenna
- magnitude PCV differences
 L0 mean > 1 mm
 maximum 1.5 mm
Calibration of GLONASS PCV

Difference between mixed and frequency dependent calibration

- constellation dependent mix of GLONASS frequencies
- $k=4$ mean frequency channel for current GLONASS constellation
- ASH700936D_M antenna
- simultaneous calibration
- magnitude PCV differences

L0 mean <1 mm
maximum 2 mm
Calibration of GLONASS PCV

TPSCR3_GGD CONE
- similar PCV pattern as ASH700936D_M choke ring antenna
- different constellation during calibration
- high correlation in L0 PCV difference GPS/GLO (k=4)
- supports independently significance and magnitude of PCV differences between GPS and GLO
Determination of Carrier-to-Noise Pattern

CN0 Robot Calibration

- modeling with spherical harmonics (degree and order as for PCV)
- CN0 for zenith set to zero, hence result is CN0 decrease
- absolute information also stored and accessible
- example

 - individual ASH700936D_M SNOW
 - receiver type L1 CN0 decrease
 - JPS Legacy 14 dBHz
 - ASHTECH Z-XII3 80 units
Determination of Carrier-to-Noise Pattern

How to Use CN0 Decrease Function?

- effective use of CN0 observable requires standardization
 - determination of equipment dependent effects
 - antenna „gain pattern“
 - cable attenuation
 - receiver dependencies
 (hardware and firmware version, parameter settings)
 - mapping function to convert to dHz CN0 observable
 - mapping function to get comparable CN0 observable between receivers
 - mapping-function for atmospheric effects (inclusive space loss)
 - calibration of satellites using global observations
Determination of Carrier-to-Noise Pattern

Applied CN0 Standardization Procedure

- several conversions and corrections applied to initial CN0 observable

<table>
<thead>
<tr>
<th>Affecting CN0</th>
<th>Abbr.</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>satellite</td>
<td>Sat</td>
<td>ICD GPS “received power function”</td>
</tr>
<tr>
<td>atmosphere</td>
<td>Atm</td>
<td>ICD GPS “received power function”</td>
</tr>
<tr>
<td>antenna</td>
<td>Ant</td>
<td>robot calibration</td>
</tr>
<tr>
<td>cable/wiring</td>
<td>Cab</td>
<td>relative CN0 (CN0 decrease)</td>
</tr>
<tr>
<td>receiver</td>
<td>Rec</td>
<td>standardization (mapping function related to Ashtech Z-X)</td>
</tr>
</tbody>
</table>

- standardized CN0 = CN0 - ((Sat + Atm) + Cab + Ant + Rec) = MP + Diff + ε
- multipath and diffraction maintained
- usable for CN0 based observation weighting
Determination of Carrier-to-Noise Pattern

CN0 Differences between Receivers

- conversion signal-to-noise units to dbHz
- significant differences in shape of functions
- cable and receiver setups allow parallel shift of function
Determination of Carrier-to-Noise Pattern

Mapping Function

- standardization using Ashtech Z-Xtreme as a reference
 - latest receiver technology during analysis (2004)
 - uses Z-tracking for L2
- 24 h data observed with identical antenna with different receivers
- example JPS Legacy with different antennas
- polynomial of 3rd degree as a mapping function on ASHTECH Z-X
- goal in graphs line with gradient 1 starting in defined origin
Determination of Carrier-to-Noise Pattern

Standardized CN0

- IGS stations with same receiver type
- influence of antenna, satellite and atmosphere corrected
- multipath averaging through number of stations
- deviation from mean value for several receivers
- magnitude of CN0 differences between receivers

L1 CN0 +/- 0.5 dbHz
(above 5 deg elevation)

- applying standardization gives improvement in absolute level
Summary and Conclusion

- robot calibration operational procedure since 2000 providing
 - GPS L1 and L2 PCV
 - GLO L1 and L2 PCV, frequency independent Delta PCV
 - GPS & GLO S1 S2 decrease functions
- GNPCVDB database in the future with GNSS PCV
- field calibration of GLONASS PCV possible
 - difference to GPS PCV
 - GLO PCV should be frequency dependent estimated and applied
- CN0 decrease functions available
 - standardization of CN0 is feasible
- IGS ANTEX (Antenna Exchange format) extension suggested
 - add Delta PCV for GLONASS
 - add CN0 pattern
thank you for your attention