Characterization of GOCE GPS Antennas

Florian Dilßner, Günter Seeber
Institut für Erdmessung (IfE), Universität Hannover, Germany

Martin Schmitz, Gerhard Wübbena
Geo++ GmbH, Garbsen, Germany

Giovanni Toso, Damien Maeusli
European Space Research and Technologie Center (ESTEC), Noordwijk, NL

Presentation at INTERGEO®, Geodätische Woche 2005, 4.-6. October, Düsseldorf, Germany
1. Fundamentals
 - Antenna Phase Center
 - Automated Absolute Field Calibration
 - Antenna Near Field Effects

2. GOCE Mission
 - Overview
 - SSTI GPS Antennas

3. GOCE SSTI Antenna Calibration
 - Test Campaign
 - Test Results

4. Summary and Conclusions
Fundamentals - Antenna Phase Center

- GPS measurements refer to electrical phase center (PC), which is neither a physical nor a stable point \rightarrow PC \((a, e, L_i)\)
- Vector from PC to mechanical antenna reference point (ARP) has to be determined by calibration
- PC is defined by mean phase center offset + variations (PCV)
Fundamentals - Automated Absolute Field Calibration

- Developed by the Institut für Erdmessung (IfE) and Geo++®
- Rigorous separation between phase center variations and site dependent multipath effects
- Antenna will be tilted and rotated by means of a precisely calibrated and fast moving robot
- Since time differences between consecutive epochs amount just a few seconds, environment multipath error is highly correlated and can be well described as a stochastic process
- PCV signal is free of systematic effects (→ „absolute“ PCV)
- Spherical harmonic expansion (8,5) is used for modelling PCV and C/N₀ data over whole antenna hemisphere
- Suitable technique for investigation of near field effects
- Mainly caused by long-periodic multipath inferences induced by the close vinicity of the receiving antenna (e.g. surface of pillars, tribachs, groundplanes, satellites...)
- Effects tend to be much stronger than multipath coming from more-distant objects because of less spreading loss
- Receiver mitigation techniques cannot distinguish between direct and reflected signal in case of short excess signal path (< 30 m)
- Near field effect will also not be eliminated by the robot calibration
- Robot calibration results describe inherent PCV pattern together with near field influence!
GOCE Mission - Overview

Mission Objectives:
- Determination of gravity-field anomalies with ±1 mGal
- Determination of geoid with ±1 cm
- Spatial resolution better 100 km

Mission Details:
- Launch in 2007
- Duration of 20 months
- Mean orbital altitude of 250 km

Payload:
- Electrostatic Gravity Gradiometer
- Satellite-to-Satellite Tracking Instrument (SSTI)
- Laser retroreflectors
GOCE Mission - Overview
GOCE Mission - SSTI GPS Antennas
GOCE Mission - SSTI GPS Antennas

- Two Quadrifilar Helix antennas developed by RYMSA, Spain
- Broad gain pattern with very sharp drop-off near horizon
- High rejection to left hand circularly polarization (LHCP)
- Significant phase center variations (PCV) due to unsymmetrical structure of feeding part and helical arms
- Directly installed on top of GOCE solar array wing
- Positions have been optimized due to numerical simulations
- Remaining near field effects will affect PCV and C/N_o
- Most critical interactions with spacecraft will be caused by solar wing, especially for the antenna located in position A2
- COSMO Patch antenna containing Dorne Margolin DM-145-10 patch element as possible backup solution
GOCE Mission - SSTI GPS Antennas
GOCE SSTI Antenna Calibration – Test Campaign

- Executed in April 2005 on the rooftop of the Institut für Erdmessung (IfE) of the University of Hannover
- Several experiments in order to characterize phase center variations as well as carrier to noise decrease as an „indicator“ for the antenna gain behaviour
- Each antenna candidate was calibrated once mounted in stand-alone mode and once mounted on a simplified GOCE solar array wing model („mock-up“)
- Differences of both set-ups reveal antenna near field effects
- Top surface of wing model is characterized by metallic honeycomb structure with cells of about 1-cm size
- Wing surface was also covered by flat metallic tape in order to evaluate influence of honeycomb structure
GOCE SSTI Antenna Calibration – Test Campaign

A) RYMSA QFH Antenna on Robot Interface

B) COSMO Patch Antenna on Robot Interface

C) RYMSA QFH Antenna on GOCE Solar Wing Model

D) COSMO Patch Antenna on GOCE Solar Wing Model
Requirements on phase center knowledge accuracy:

± 1.84 mm @ carrier signal L1
± 2.35 mm @ carrier signal L2

Requirements on maximum near field multipath error:

± 3.2 mm @ carrier signal L1
± 4.0 mm @ carrier signal L2
GOCE SSTI Antenna Calibration – Test Results

Characterization of RYMSA Quadrifilar Helix Antenna
Phase Center Variations of Stand-alone Calibration
GOCE SSTI Antenna Calibration – Test Results

Characterization of RYMSA Quadrifilar Helix Antenna
Carrier to Noise Decrease of Stand-alone Calibration
GOCE SSTI Antenna Calibration – Test Results

Characterization of COSMO Patch Antenna
Phase Center Variations of Stand-alone Calibration

![3D graphs showing phase center variations](image-url)
Characterization of COSMO Patch Antenna
Carrier to Noise Decrease of Stand-alone Calibration
Influence of GOCE Solar Wing Model on Mean Phase Center
Differences of PCO between Stand-alone and Mock-up Calibration
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna
Differences of PCV between Stand-alone and Mock-up Calibration
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna
Differences of PCV between Stand-alone and Mock-up calibration

<table>
<thead>
<tr>
<th>Cut-off [deg]</th>
<th>Min [mm]</th>
<th>Max [mm]</th>
<th>Std [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>-4.8</td>
<td>+9.0</td>
<td>±1.8</td>
</tr>
<tr>
<td>15°</td>
<td>-3.8</td>
<td>+5.6</td>
<td>±1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut-off [deg]</th>
<th>Min [mm]</th>
<th>Max [mm]</th>
<th>Std [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>-4.7</td>
<td>+11.4</td>
<td>±1.9</td>
</tr>
<tr>
<td>15°</td>
<td>-4.7</td>
<td>+4.7</td>
<td>±1.5</td>
</tr>
</tbody>
</table>

RYMSA QFH configuration satisfies requirements!
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna
Differences of PCV in case of ionospheric-free linear combination L0

![Image of 3D graph showing differences of phase center variations (dPCV)]
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna
Differences of C/N_0 between Stand-alone and Mock-up Calibration

![Graphs showing differences of Carrier to Noise Decrease (dC/No)]
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on COSMO Patch Antenna
Differences of PCV between Stand-alone and Mock-up Calibration
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on COSMO Patch Antenna

Differences of PCV between Stand-alone and Mock-up calibration

<table>
<thead>
<tr>
<th>Cut-off [deg]</th>
<th>Carrier Signal L1</th>
<th>Carrier Signal L2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min [mm]</td>
<td>Max [mm]</td>
</tr>
<tr>
<td>0°</td>
<td>-8.6</td>
<td>+20.9</td>
</tr>
<tr>
<td>15°</td>
<td>-3.7</td>
<td>+8.0</td>
</tr>
</tbody>
</table>

COSMO Patch configuration does not satisfy requirements!
GOCE SSTI Antenna Calibration – Test Results

Influence of GOCE Solar Wing Model on COSMO Patch Antenna
Differences of C/N_0 between Stand-alone and Mock-up Calibration
Summary and Conclusions

- SSTI antenna calibration results are essential for achieving a 1-cm accuracy level for the GOCE POD application.
- Test candidates already show PCV in azimuth and elevation of up to 1 cm when calibrated in stand-alone mode. (→ Single mean phase center offset is consequently not sufficient for the characterization of the entire antenna.)
- Presence of the spacecraft's solar array wing can cause additional near field effects like multipath of up to more than 3 cm in phase and 5 dB-Hz in amplitude.
- As expected from theory, multipath induced phase errors tend to be stronger on carrier signal L2 than on L1.
- Using a flat surface instead of rough honeycomb structure does not cause considerable changes in the results.
Summary and Conclusions

- RYMSA QFH configuration satisfies GOCE SSTI requirements in terms of maximum near field multipath
- COSMO Patch configuration does not satisfy GOCE SSTI requirements in terms of maximum near field multipath
- Near field effects are amplified by a factor of 3 using the ionospheric-free linear combination L0, which is of particular relevance for the GOCE SSTI data processing
- Independent numerical electromagnetic simulations done at ESA-ESTEC confirm the Hannover test results