Characterization of GOCE GPS Antennas

Florian Dilßner, Günter Seeber

Institut für Erdmessung (IfE), Universität Hannover, Germany

Martin Schmitz, Gerhard Wübbena Geo++ GmbH, Garbsen, Germany

Giovanni Toso, Damien Maeusli European Space Research and Technologie Center (ESTEC), Noordwijk, NL

Presentation at INTERGEO[®], Geodätische Woche 2005, 4.-6. October, Düsseldorf, Germany

Structure

1. Fundamentals

- Antenna Phase Center
- Automated Absolute Field Calibration
- Antenna Near Field Effects

2. GOCE Mission

- Overview
- SSTI GPS Antennas

3. GOCE SSTI Antenna Calibration

- Test Campaign
- Test Results

4. Summary and Conclusions

Fundamentals - Antenna Phase Center

- GPS measurements refer to electrical phase center (PC), which is neither a physical nor a stable point \rightarrow PC (a, e, L_i)
- Vector from PC to mechanical antenna reference point (ARP) has to be determined by calibration
- PC is defined by mean phase center offset + variations
 (PCV)
 Phase Center Variations (PCV)

Fundamentals - Automated Absolute Field Calibration

- Developed by the Institut für Erdmessung (IfE) and Geo++[®]
- Rigorous separation between phase center variations and site dependent multipath effects
- Antenna will be tilted and rotated by means of a precisely calibrated and fast moving robot
- Since time differences between consecutive epochs amount just a few seconds, environment multipath error is highly correlated and can be well described as a stochastic process
- PCV signal is free of systematic effects (→ "absolute" PCV)
- Spherical harmonic expansion (8,5) is used for modelling PCV and C/N_o data over whole antenna hemisphere
- Suitable technique for investigation of near field effects

Fundamentals - Antenna Near Field Effects

- Mainly caused by long-periodic multipath inferences induced by the close vinicity of the receiving antenna (e.g. surface of pillars, tribachs, groundplanes, satellites...)
- Effects tend to be much stronger than multipath coming from more-distant objects because of less spreading loss
- Receiver mitigation techniques can not distinguish between direct and reflected signal in case of short excess signal path (< 30 m)
- Near field effect will also *not* be eliminated by the robot calibration
- Robot calibration results describe inherent PCV pattern *together* with near field influence!

GOCE Mission - Overview

Mission Objectives:

- Determination of gravity-field anomalies with ±1 mGal
- Determination of geoid with ±1 cm
- Spatial resolution better 100 km

Mission Details:

- Launch in 2007
- Duration of 20 months
- Mean orbital altitude of 250 km

Payload:

- Electrostatic Gravity Gradiometer
- Satellite-to-Satellite Tracking Instrument (SSTI)
- Laser retroreflectors

GOCE Mission - Overview

GOCE Mission - SSTI GPS Antennas

GOCE Mission - SSTI GPS Antennas

- Two Quadrifilar Helix antennas developed by RYMSA, Spain
- Broad gain pattern with very sharp drop-off near horizon
- High rejection to left hand circularly polarization (LHCP)
- Significant phase center variations (PCV) due to unsymmetrical structure of feeding part and helical arms
- Directly installed on top of GOCE solar array wing
- Positions have been optimized due to numerical simulations
- Remaining near field effects will affect PCV and C/N $_{
 m o}$
- Most critical interactions with spacecraft will be caused by solar wing, especially for the antenna located in position A2
- COSMO Patch antenna containing Dorne Margolin DM-145-10 patch element as possible backup solution

GOCE Mission - SSTI GPS Antennas

- Executed in April 2005 on the rooftop of the Institut für Erdmessung (IfE) of the University of Hannover
- Several experiments in order to characterize phase center variations as well as carrier to noise decrease as an "indicator" for the antenna gain behaviour
- Each antenna candidate was calibrated once mounted in stand-alone mode and once mounted on a simplified GOCE solar array wing model ("mock-up")
- Differences of both set-ups reveal antenna near field effects
- Top surface of wing model is characterized by metallic honeycomb structure with cells of about 1-cm size
- Wing surface was also covered by flat metallic tape in order to evaluate influence of honeycomb structure

A) RYMSA QFH ANTENNA ON ROBOT INTERFACE

B) COSMO PATCH ANTENNA ON ROBOT INTERFACE

D) COSMO PATCH ANTENNA ON GOCE SOLAR WING MODEL

Requirements on phase center knowledge accuracy:

± 1.84 mm @ carrier signal L1± 2.35 mm @ carrier signal L2

Requirements on maximum near field multipath error:

± 3.2 mm @ carrier signal L1± 4.0 mm @ carrier signal L2

Characterization of RYMSA Quadrifilar Helix Antenna

Phase Center Variations of Stand-alone Calibration

Characterization of RYMSA Quadrifilar Helix Antenna

Carrier to Noise Decrease of Stand-alone Calibration

Characterization of COSMO Patch Antenna

Phase Center Variations of Stand-alone Calibration

Characterization of COSMO Patch Antenna

Carrier to Noise Decrease of Stand-alone Calibration

Influence of GOCE Solar Wing Model on Mean Phase Center Differences of PCO between Stand-alone and Mock-up Calibration

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna Differences of PCV between Stand-alone and Mock-up Calibration

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna Differences of PCV between Stand-alone and Mock-up calibration

Carrier Signal L1				Carrier Signal L2				
Cut-off	Min	Max	Std	Cut-off	Min	Max	Std	
[deg]	[mm]	[mm]	[mm]	[deg]	[mm]	[mm]	[mm]	
0°	-4.8	+9.0	±1.8	0°	-4.7	+11.4	±1.9	
15°	-3.8	+5.6	±1.4	15°	-4.7	+4.7	±1.5	

RYMSA QFH configuration *satisfies* requirements!

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna

Differences of PCV in case of ionospheric-free linear combination L0

Influence of GOCE Solar Wing Model on RYMSA QFH Antenna Differences of C/N_o between Stand-alone and Mock-up Calibration

Influence of GOCE Solar Wing Model on COSMO Patch Antenna Differences of PCV between Stand-alone and Mock-up Calibration

Influence of GOCE Solar Wing Model on COSMO Patch Antenna Differences of PCV between Stand-alone and Mock-up calibration

Carrier Signal L1				Carrier Signal L2				
Cut-off	Min	Max	Std	Cut-off	Min	Max	Std	
[deg]	[mm]	[mm]	[mm]	[deg]	[mm]	[mm]	[mm]	
0°	-8.6	+20.9	±4.1	0°	-16.7	+31.2	±7.7	
15°	-3.7	+8.0	±3.0	15°	-13.9	+24.1	±6.3	

COSMO Patch configuration does *not satisfy* requirements!

Influence of GOCE Solar Wing Model on COSMO Patch Antenna Differences of C/N_o between Stand-alone and Mock-up Calibration

Summary and Conclusions

- SSTI antenna calibration results are essential for achieving a 1-cm accuracy level for the GOCE POD application
- Test candidates already show PCV in azimuth and elevation of up to 1 cm when calibrated in stand-alone mode
 (→ Single mean phase center offset is consequently not sufficient for the characterization of the entire antenna)
- Presence of the spacecraft's solar array wing can cause additional near field effects like multipath of up to more than 3 cm in phase and 5 dB-Hz in amplitude
- As expected from theory, multipath induced phase errors tend to be stronger on carrier signal L2 than on L1
- Using a flat surface instead of rough honeycomb structure *does not* cause considerable changes in the results

Summary and Conclusions

- RYMSA QFH configuration *satisfies* GOCE SSTI requirements in terms of maximum near field multipath
- COSMO Patch configuration does *not satisfy* GOCE SSTI requirements in terms of maximum near field multipath
- Near field effects are amplified by a factor of 3 using the ionospheric-free linear combination L0, which is of particular relevance for the GOCE SSTI data processing
- Independent numerical electromagnetic simulations done at ESA-ESTEC confirm the Hannover test results

