

Benefits of State Space Modeling in GNSS Multi-Station Adjustment

Andreas Bagge, Gerhard Wübbena Martin Schmitz

Geo++® GmbH D-30827 Garbsen, Germany www.geopp.de

1

Content

- Introduction
- State Space Model
 - Examples
- State Space Representation

Network RTK: Network Tasks

- primary task (pre-requisite)
 - carrier phase ambiguity resolution within network through adequate modeling
 - determine distance (and site) dependent errors
 - minimum number (density) of reference stations
 - ambiguity free distance dependent errors required
 - -> State Space Model
- secondary task
 - represent network information to be used by rovers
 - distance dependent errors
 - reference station dependent errors
 - -> State Space Representation
 - -> Observation Space Representation

State Space Model

- Idea: model ERROR SOURCES instead of ERROR INFLUENCE
 - Error Influence: observation space
 - Error sources: state space
- all error sources build up the State Space Model (SSM) of current status of all GNSS error sources
- State Space Model consists of
 - model algorithms
 - model parameters
- Model Parameters consist of
 - state vector of unknown parameters
 - complete variance/covariance matrix

State Space Model: Advantages

- better representation of real physics
- separation of error sources with similar influence
 - ionosphere <-> L1/L2 group delay
 - troposphere <-> orbit
 - station multipath <-> antenna PCV
 - etc.
- redundancy
 - all stations contribute to error state
- prediction in time
 - low elevation ambiguity fixing
 - -> increased availability
- prediction in space
 - sparse networks
 - -> reduced costs
 - extrapolation
- special tasks
 - monitoring of moving reference stations

GNSMART: Redundancy

- Networks with large number of observing stations
 - make use of high redundancy through rigorous multi-station adjustment
- ==> Benefits
 - increase inter-station distance: Sparse RTK Networks
 - determine/reduce site dependent errors (Multipath)
 - improve accuracy of state information
 - improve reliability of state information
 - improve availability of state information
 - Lower elevation mask for ambiguity fixing for rising satellites

GNSMART: Network Size

- Networks with increased network size
 - better de-correlation of state parameters
 - orbits, troposphere, clocks
 - ionosphere, signal delays
 - Benefits
 - state space representation (Standards ?)
 - state parameter exchange
 - wide range coverage
 - use of wide range communication media

Hierarchical + Cooperating Networks

- Exchange of state parameters including variance/covariance matrixes allows rigorous combination of networks:
 - Hierarchical networks
 - take advantage of better de-correlation of state parameters in large scale networks
 - provide network RTK service from small scale networks with higher density
 - Cooperating networks
 - increase combined network size (state parameter de-correlation)
 - increase network performance through higher redundancy

Examples

GeoInformation Workshop 2004, Istanbul Kultur University, September 20-26, Antalya

Robust from Redundancy

- robust against single reference station
 - failure or
 - errors
- all state parameters can be estimated even if one stations is off
- only small reduction in accuracy and availability (TTFA)

GNSMART: Sparse RTK Network

Example: SAPOS Niedersachsen

- complete area 300 x 400 km
- normally:
 45 reference stations
 40 to 70 km
- reduced to:
 8 reference stations
 96 to 222 km
- State Space Model (SSM) FKP mode

-> no problem for GNSMART network

GNSMART: Sparse RTK Network SAPOS Lower Saxony (8 Stations)

- Rover 0654, 354 fixes over 12 h with stochastic trop.
- 65.4 km distance to closest reference station

Northing +/- 13,0 mm

Easting +/- 8,6 mm

Height +/- 18,9 mm

-> still good accuracy for 2D, height acceptable

GeoInformation Workshop 2004, Istanbul Kultur University, September 20-26, Antalya

13

GNSMART: Sparse RTK Network SAPOS Lower Saxony (8 Stations)

- TTFA (time to fix ambiguity)histogram
- 583 fixes
- Mean 43 s
- rover with stochastic troposphere

-> significantly increased TTFA on rover

14

Mixed distances in Network

- combination of different reference station distances in one network
- small distances in developed areas
- long distances in desert areas
- Example: Brandenburg/Germany

Large Networks

- nation-wide networks
- 1200 GSI stations
- 300-350 in reference network
- co-operating sub-networks
- homogenous network from user-view
- Example: PAS network (Mitsubishi/Japan)
 - Dynamic Datum included

State Space Representation of Network-RTK Information

GNSMART: State Space Representation

- Advantages of State Space Representation (SSR) vs Observation Space Representation (OSR)
 - Broadcast Operation
 - Optimized Bandwidth
 - 200-300 bps (SSR)
 - >=2400 bps (OSR-RTCM)
 - Information exchange between networks
- Disadvantages of SSR vs OSR
 - More complicated standardization due to necessity of consistent modeling
- Requirement: State parameters must maintain integer nature of carrier phase ambiguities

GNSMART: State Space Representation

- Transmission rates and validity
 - Satellite clock few seconds global
 Satellite Orbit 10-30 minutes global
 Ionosphere

 minutes global
 minutes global
 regional

 Troposhere minutes regional

- Higher transmission rates often useful

 only for practical reasons (minimized acquisition time)
- ToDo: standardization of models

Conclusions

- GNSMART is based on State Space Model which allows
 - best robustness
 - high performance
 - mixed distances in networks
 - very large networks
 - sparse networks
 - co-operating networks
 - hiearchical networks
- GNSMART State Space Model is required for State Space Representation
 - prepared for future representation techniqes

For **general information** on GNSMART State Space Model please refer to the Geo++ home page:

http://www.geopp.com/gnsmart

For **background publications** refer directly to the Geo++ Publications page:

http://www.geopp.com/publications/english/lit_e.htm